
Effect of algorithms’ multiple representations in the context of
programming education

Stefania Siozou, Nikolaos Tselios, Vassilis Komis

Department of Educational Sciences and Early Childhood Education,

University of Patras
(siozous@upnet.gr; nitse@ece.upatras.gr; komis@upatras.gr)

University of Patras, 26500 Rio, Patra, Greece

Abstract

The goal of the study presented in this paper is to compare the effect of different representations while teaching basic
algorithmic concepts to novice programmers. Towards this goal, a learning activity was designed and mediated with
two conceptually different learning environments, each one used by a different group. The first group used the learning
environment “Visual Flowchart”, which enables students to construct and examine an algorithm using visual
representations of typical flowchart objects. The second group used the software “Language Interpreter”, which allows
students to express an algorithm using pseudocode. Analysis of results among the two groups showed no statistically
significant differences in the students’ performance with respect to the tool they used to solve the presented activity, the
school stream they followed in high school and their gender. The aforementioned learning environments are also
discussed in detail.

Keywords: didactics of informatics, teaching computer science, teaching algorithms, multiple representations,
flowcharts, pseudocode, Visual Flowchart, Language Interpreter, programming education, novice programmers.

Introduction

An algorithm is a definite list of well-defined instructions for completing a task

and solving a problem. Teaching of algorithms, in the frame of computer programming,
poses specific challenges in comparison to other learning domains (Sajaniemi and
Kuittinen, 2005, Kolikant and Ben-Ari, 2008). The student is exposed to novel,
previously unforeseen, attributes of the computational technology. The teacher attempts
to help her understand that she cannot only command the machine to execute specific
orders, but she can also program the machine to carry out a set of predefined activities,
according to specific rules. Mastering this process has a prerequisite of developing
various skills, both abstract and concrete (Nardi, 1993). First, the student has to gain a
general understanding of what the machine is capable of and conceptualize the basic
logic that rules a programming language (Komis, 2001, 2005). In addition, she has to
transform her approach for a solution in a given problem, in a concrete manner and
finally express it with respect to the particularities of a given language.

Prior to the algorithm construction, the student has to develop skills in identifying
the key aspects of the problem and planning a suitable solution, using tools to design
abstract diagrammatic notations such as flowcharts. Following the pioneering work in
cognitive theories of problem solving activities by Newell and Simon (1972), attempts to
define the ill structured cognitive activity of programming have occurred (Shneiderman,
1980). This activity contains processing and conceptualisation of both semantic and
syntactic information, the structuring of regularly-used information into schemas, and the

solution of design problems in terms of previously acquired and frequently modified
plans (Chang, 1990).

The need to communicate various but often complementary skills to the student,
seems to shape a fertile area for introducing programming concepts using multiple
representations. Algorithms can be expressed in various notations, including flowcharts
and pseudocode. A flowchart is a schematic representation of an algorithm or a process.
Pseudocode is a compact and informal high-level description of a computer algorithm
that uses the structural conventions of programming languages, but omits detailed
subroutines, variable declarations or too formal language-specific syntax which is one of
the most significant difficulties that beginner students face (Brusilovsky et al., 1997).

The fundamental difference in the level of abstraction between pseudocode and
diagrammatic representations, such as the flowcharts, seems to give an efficient
alternative to present basic algorithmic concepts to students. As a result, it is reasonable
to expect that different representations will stress different types of information at the
expense of others. In addition, the possibility to deal with algorithm creation using
multiple representations in an introductory level is complementary by nature, since a
notation’s understanding is often not complete and/or correct (Blackwell et al., 2001).
According to Bohl (1971), flowcharting helps distinguish between the procedure a
computer program is written to express it and the syntactical details of the language in
which the program is written. Bohl, treats the flowcharting task as an essential tool in
problem solving and argues that it is a strong indicator of one’s ability to anticipate and
analyze a problem, plan the solution and solve the problem.

Previous studies (Crews and Ziegler, 1998, Scanlan, 1987, 1989) have compared
the use of these different tools by novice programmers, concluding that students perform
better when using flowcharts. Crews and Ziegler (1998), conducted an experiment on 58
students, during the course "Introduction to Programming in BASIC". Students had been
introduced to loops and conditional statements, and flowcharts had been used in both
classes to illustrate the semantics of loops and conditional statements. The activity
presented to the students involved three algorithms of different degree of difficulty:
simple, medium and complex. Each algorithm had a flowcharted version and a QBasic
program version involving simple conditions and outputs. Three metrics were given to
the students and after they executed the algorithms they had to calculate the result of each
implementation. Analysis of the results showed that students performed better when they
used flowcharts since they needed less time, had higher self-reported confidence about
the correctness of their answers and their solutions were more correct. Thus, Crews and
Ziegler (1998) concluded that beginners familiarize with algorithms more effectively
when they use flowcharts compared to using actual programming environments.

On the contrary, previous studies conducted by Shneiderman et al. (1977),
investigated the use of flowcharts in understanding Programming. They concluded that
flowcharts transport neither more, nor less information from Programming Languages. In
addition, Atwood and Ramsay (1978) found that a program design language was actually
better than a flowchart for software design by graduate computer science students.
Finally, Brooke and Duncan (1980a, 1980b) found that flowcharts did help in tracing
execution flow but were of little help in debugging. In specific, despite that flowcharts
helped to localize the area where a bug was, the students were unable to identify it.

Scanlan (1987) studied students’ preference between the use of flowcharts and
pseudocode. The sample size of the study was 39 students of various ages. All subjects
had very similar background-knowledge in flowcharts and pseudocode. A questionnaire
was given to each student. Subjects were exposed randomly to both pseudocode and
fllowcharts during lectures prior to the administration of the questionnaire, for 6 weeks.
The hypotheses of this research were derived from a neurocognitive model, which states
that the left hemisphere of the brain, processes information sequentially, verbally and
logically, it processes verbal algorithmic techniques, such as pseudocode. Consequently,
pseudocode stimulates the left part of our brain. However, flowcharts also contain
information that can stimulate the left department. The right hemisphere of the brain
processes information simultaneously and spatially. Flowcharts stimulate this department
of the brain too, while the pseudocode does not (Bayman and Mayer, 1988). Thus, the
entire brain is stimulated by flowchart representation, while only the left part is
stimulated by pseudocode. Therefore, Scanlan (1987) hypothesized that students prefer
flowcharts. The results of the research, confirm his hypothesis and indeed, students
preferred flowcharts and comprehend them better. The only circumstance under which
they prefer to be taught in pseudocode is when they are asked to write a Program
immediately after learning the algorithm.

Cunnif and Taylor (1987) devised a graphical language FPL, which is ‘a
structured flowchart informationally equivalent to Pascal’. FPL was superior compared to
Pascal, in their experiment involving speed and accuracy of novices on recognition of
simple structures, flow of control, input/output and evaluation of simple program
fragments. A subsequent study (Cunnif et al., 1989) investigated novices’ program
construction. They concluded that although certain typical semantic errors are similarly
common in both FPL and Pascal, certain other bugs appear to be rarer in FPL. According
to the authors the FPL’s spatial arrangement allows the user to think more clearly about
loops and missing initializations. According to Green (1989) the critical factor
determining comprehensibility of notations is accessibility of information. He argues that
certain types of information are likely to be accessed more easily from diagrams.

In addition, other studies report that almost 75% to 83% of students are "visual"
students (Fowler et al., 2000, Thomas et al., 2002). A "visual student" is the student that
remembers something better when she is exposed to representations such as tables,
diagrams, pictures, videos, concept maps, graphs and presentations. Consequently,
teaching seems to be more effective when the ideas, the concepts, the data and all the
relevant information are presented using rich visual representations. Scanlan (1989)
conducted a study involving 193 students and 16 learning sessions, in which he
investigated their preference when learning introductory and simple algorithms using
graphical representations (flowchart) and lexical representations (pseudocode). The
results indicated that students prefer flowcharts. The preference for flowcharts ranged
from 75.1% to 89.1%. In specific, the results indicate that students preferred flowchart
presentations in their books. Moreover, they favored the usage of flowcharts while
comprehending algorithms, and preferred to view a structured flowchart representation
prior to a structured pseudocode version, when they were given the opportunity to use
both techniques.

According to the aforementioned research efforts, one could conclude that the use
of flowcharts is preferred, as opposed to the use of Programming Languages or

pseudocode, by novice programmers (Larkin and Simon, 1987). In some cases, research
has indicated that flowcharts are easier to use, comprehend and help novice programmers.
Moreover, the visualization that they offer is an important help for the users. On the
contrary, programming languages require strict syntax and structure, facts that make their
use difficult, while at the same time they do not allow users to focus on the concepts and
content of programming (Scanlan, 1989). However, alternative representations, such as
pseudocode, seem easier to handle while in the process of debugging a program, or when
a programming tasks is too big and/or complex.

The goal of the research presented in this paper is to compare the effect of
different representations while teaching basic algorithmic concepts to novice
programmers. To achieve this goal, a suitable experiment was designed to study the
performance of two groups, in an identical activity of creating an algorithm. In specific,
the research question is the existence or not of statistically significant difference in the
students’ performance in relation with the tool they used to solve the activity, the school
stream (scientific, focused on ‘hard sciences’ such as Physics and Mathematics,
technological, focused on applied Informatics and social sciences and humanities, which
gives special emphasis to lessons related to social sciences) they followed in high school
and their gender.

In this paper, the methodology and the context of our study is presented first,
followed by a presentation of the learning environments created and used to support the
experiment. Subsequently, results of the students’ performance while solving the activity
are presented and discussed. Finally, we attempt to reason on the findings and propose
some ideas for future work.

Methodology

The study took place in the computer lab of the Department of Educational

Sciences and Early Childhood Education (DESECE) of the University of Patras. 38
students participated voluntarily in the study (7 male, 31 female, aged 21- 24 years).
Among them, 24 were students of DESECE while the rest 14 were students of other
departments of the University and the Higher Technological Education Institution of
Patras. None of the students of the sample studied in a department related to computer
science or other relevant topic. The sample was randomly divided into two groups. The
first group consisted of 20 students and the second group consisted of 18 students, since
two more students were not able to participate in the study. The same learning activity
was assigned to both groups. The first group had to use flowcharts and the second
pseudocode to express their solutions.

The members of the first group used the ‘Visual Flowchart’ (VFC), (Tselios et al.,
2007, freely available at http://www.ecedu.upatras.gr/flowchart). In this learning
environment, the algorithms are developed in the form of a flowchart, and consequently
the program implementation process occurs in a visual way. Relative research has shown
the learning effectiveness of visual representations of an algorithm (Cunniff and Taylor,
1987, Scanlan, 1989), specifically if the learners are in the introductory stages of a
programming course. The program follows the typical design conventions of a direct
manipulation application such as menus, toolbars and buttons. The student can select
flowchart objects, presented on the left side of the screen, drag them to the workspace
and connect them (Figure 1). A representative screenshot of the learning environment is

http://www.ecedu.upatras.gr/flowchart

presented in Figure 1 depicting a solution of the activity presented to the students. In the
upper part of the screen, a toolbar containing the commands the user needs in order to run
the algorithm, is found.

The VFC provides the facility of saving an algorithm in a form that can be
“called” from another algorithm as well as from itself, thus supporting the function and
recursiveness concept respectively. A function to create an executable file that allows the
autonomous implementation of an algorithm without the requirement of the environment
is also present. Moreover, the ability to change the delay of each step of the
implementation is given. In case that the longest possible delay is selected the algorithm
is practically executed step to step, and the program’s execution is paused until the
students presses the corresponding key (play). In addition, various representative
algorithms are available as examples, giving the opportunity to the user to experiment
with them. Finally, the user can observe the current values of selected variables and the
memory stack while the algorithm is executed.

Figure 1. User interface of the ‘Visual Flowchart’ learning environment

The "Language Interpreter” (LI) was used by the members of the second group to

solve the activity. The LI is an educational software used for the creation and
implementation of algorithms using pseudocode. The form of the pseudocode, follows
the lexical and syntactic conventions as derived by the Greek national curriculum of
secondary schools (Greek Pedagogical Institute). It has got similar structural and
syntactical characteristics with many classic, widespread programming languages such as
PASCAL and C. The LI follows the classical design approach of a window application
while at the same time the configuration of the user interface is considerably similar to
the majority of the environments that are used for the creation of the typical programming
languages. The desktop of the program consists of: a menu bar (1), a tool bar (2) and the
3 parts of the Interpreter, the top part, which is the code writing area (3), the down part,
which is the execution simulation screen area (4) and the right part, which presents the

used variables, their current values and the available syntactic expression (5), as is it
shown in Figure 2.

LI gives the possibility of calling a procedure using the command "Call". In
addition, tools to execute the algorithm step by step and examine the current values of
selected variables (Figure 2 part 5) are provided. Such functions enable deep exploration
of the algorithm’s behavior by providing rich feedback on the students’ expressed
programming approaches. In addition, the system aids the student while structuring and
expressing her approach, providing meaningful and detailed error messages supported by
clear explanations (Figure 2, part 4), automatic coloring of the words depending on their
syntactic importance and automated code alignment (Figure 2, part 3). It also includes
embedded help which contains the formal definitions of the commands coupled with
representative examples. Finally, the possibility to export the code list in various common
formats such as HTML format is also provided.

Figure 2. User Interface of the ‘Language Interpreter’ learning environment

Description of the activity

The goal of the activity given to the students was to calculate the cost per person
of a vacancy trip to a Greek Island. The cost was calculated with the creation of a suitable
algorithm. The activity was comprised of five sub-goals characterized by gradually
increased difficulty. Concerning the first question, the algorithm had to calculate the cost
per person, which varied, depending on the number of individuals that had signed up
together (1-3 individuals). To tackle this problem, the students had to put the logical
components of the algorithm, which were given to them, in the right order. In order to
solve the second question, they had to embed an appropriate select case structure. As a
result, when the input reflecting the number of individuals was different than 1, 2 or 3,
the message "Invalid number of students" was appeared.
 In the third question, the calculation of two new variables was added: a) the
variable s, which is the amount that will be subtracted from the highest payable amount

and is equal to the constant difference 15€ multiplied by the number of students that
signed up together and b) the variable j, which is the result of the subtraction. In the
fourth question, the variable a (the possibility of choosing an airplane as a means of
transportation), is introduced, as well as the need to check the variable and calculate
accordingly the new price of j. Therefore, if the variable a is equal to 1, which means that
an airplane is used as a means of transportation, the price of the variable j (depicting the
payable amount) should be increased by 70€ per individual. In the last question, variables
c and e, are introduced and represent the entrance of the students in a bar. The variable c
is examined, and if it is equal to 1 (which means the entrance in a "club" is selected), the
variable e takes price depending on the number of individuals that have signed up
together. Otherwise, the variable e is 0. In the end of the algorithm, the price of the
variable j changes and is equal to e.

Procedure

An introductory presentation of the two tools was given to all students
participating in the study. Information was also provided at that time to inform them
about what they would be doing. At the end of each presentation, the students were given
copies of the presentations as well as the electronic address from which they could
download the two tools (www.ecedu.upatras.gr/algorithmics). Moreover, a
supplementary brochure for each tool was given to the students, in case they needed help.

The students were divided into two groups. The first group used the software
“Visual Flowchart”, while the second group used the “Language Interpeter” for solving
the exercise. However, all students had both tools at their disposal, and if they had time
they could try solving the activity with both tools. 20 identical computers of the
departments’ computer lab were used, on which the students solved the exercise that was
given to them.

 All the data from the activities that the students had solved were collected and
analyzed. In addition, a questionnaire to report their subjective opinions concerning the
usefulness of the learning environment which they used was also given to them. The
questionnaire consisted of two parts: the first part referred to the name of the student, the
possession of a computer and the school stream followed in high school, while the second
part consisted of 12 questions, 2 of which had 3 sub questions, and all of them could be
answered on a Likert scale 1-5. The questions referred to flowcharts, pseudocode and the
two learning environments.

Concerning the activity, a specific system for evaluating the answers of the
students for each question of the exercise was used. The values were given depending on
the performance of each student, giving up to ten points for a correct solution for each
question. Each student involved in the study gathered a total score with a maximum of
5*10=50 points. All of the students’ files expressing their approaches were saved on their
computers. Subsequently, the data were collected and analyzed. After each student
finished the exercise, she completed the questionnaire, wrote her name on the forms that
she had at her disposal and withdrew. Analysis of the data was conducted using SPSS
15.0.

Results

http://www.ecedu.upatras.gr/algorithmics

 As derived from the questionnaires, 90% of the first group own a computer and
10% do not. For the second group, the percentage of computer ownership (78%) is
smaller than the equivalent of the first group, but is still substantially higher than the
percentage of those that do not own a computer (22.2%).

With regard to the school stream followed by the participants, 50% of the first
group and 41.2% of the second followed the ‘’Social Sciences and Humanities’ Stream,
15% and 11.8% of the first and second group followed the ‘Scientific’ Stream and 35%
of the first group and 47.1% of the second group followed the ‘Technological’ Stream.

In Table 1, the average of the two groups, for all the remaining questions is
presented. A Likert scale (1-5) was used. Independent t-tests for each question revealed
no statistically significant difference for the answers of each group. However, in several
questions the difference in the averages is notable and reaches up to 0.6.

Table 1. Average score of each group for the questions of the questionnaire
Question Group 1

(VFC)
Group 2

(LI)
p- value

Experience in Programming 2.1 1.8 0.499
Experience in “flowcharts” 1.9 1.6 0.447
Experience in “pseudocode” 1.8 1.8 0.957
Suitability of VFC (LI) for learning basic
programming concepts

3.6 3.4 0.581

 VFC (LI) Usability 3.9 3.3 0.131
Self efficacy 2.7 2.6 0.827
Was the activity interesting and engaging? 3.9 4.1 0.705
Did you understand flowcharts (pseudocode) in the
frame of the activity?

3.7 3.4 0.378

Was this activity suitable for learning basic
programming skills?

4.1 3.7 0.290

As far as the presented activity is concerned, the goal of the presented research

was to investigate whether certain learner’s attributes influence their performance while
solving the activities using the two aforementioned computational learning environments.
In specific, the existence of significant statistical importance is examined, in connection
with: a) the tool they used to solve the activity, b) the school stream they followed in high
school, and c) their gender.

Figure 3. The number of questions answered by the sample

In Figure 3, the total number of answers is presented, but not the success rate on

each specific question. In certain cases some students had answered questions, but not in
a sequence. Figure 4 presents the number of students of each group that answered each
one of the five questions of the activity. As it is apparent in the graph, 34 out of 38 dealt
with the first question, 32 with the second, 27 with the third, 16 with the fourth and 9
with the last one. Consequently, as the degree of difficulty increases in the questions, the
performance decreases. However, our sample consisted of novice programmers. Thus a
weakness in comprehending questions of gradually increasing complexity was expected.

Figure 4. Number of answers from students for each question of the activity

As discussed previously, each member of the sample was given a total score,

depicting his performance on the activity. The first group’s average performance was
24.3 out of 50 while the second group’s was 28.5 out of 50. For the whole sample the
average performance was 26.4 out of 50. Therefore, the group that used the program VFC
had a lower average than the group that used the program LI, by 4.2 units. For each
question, the grades that each team achieved are presented in Figure 5.

Figure 5. Each group’s average for each question

In the first question, the first group had an average of 8.5 (out of 10) and the
second group had an average of 9.4. In the remaining questions, the first group had an
average of 7.9, 4.25, 2.75 and 0.9, respectively for each question, while the second group
had an average of 8.9, 5.8, 2.7 and 1.7. The question number is a strong determinant of
each group performance as expected due to its increased difficulty. Specifically, in the
two last questions, the performance of both teams is very low. This ascertainment depicts
that novice programmers can achieve a higher performance if simple questions, fewer
variables, actions and clean logical structures, are preferred.

For the data analysis of both groups’ performance on the activity, an ANOVA
was performed (Table 2). As aforementioned, the analysis investigated the effects of the
tool used by the students to solve the exercise, the school stream they followed in high
school and their gender on their performance.

Table 2. Results of ANOVA analysis

Sum of
Squares df

Mean
Square F

p-
value

Student performance
according to the tool they
used

Between Groups 7.474 24 .311 2.024 .093

 Within Groups 2.000 13 .154
 Total 9.474 37
Students' performance per
followed school stream Between Groups 17.892 23 .778 .722 .760

 Within Groups 14.000 13 1.077
 Total 31.892 36

Students' performance
according to
their gender

Between Groups 3.711 24 .155 1.005 .515

 Within Groups 2.000 13 .154
 Total 5.711 37

 Students’ performance according to the school stream followed in high school
(Scientific, Technological, Social Sciences and Humanities), is presented in Figure 6
(leftmost part). From the graph it appears that the students that had followed the
“Technological Stream” gathered the highest score (28.46 out of 50). This could be
attributed to the fact that the particular school stream includes a course in Computer
Programming named "Design of Applications in a Programming Environment".
However, their difference was small. In specific, 3.1 points higher than students that
followed the “Theoretical Stream” (25.35) and 4.2 points higher than the individuals of
Positive Stream (24.20). An interesting finding is that even though the “Positive Stream”
deals with Mathematics, and Computer Programming is connected directly with them,
students’ from the “Theoretical Stream” achieved a higher score. As shown in Table 3,
the school stream that was followed, does not appear to influence their performance in
the activity (p=0.760, ns).

Figure 6. Students’ performance per followed school stream (left) and according to their gender (right)

Rightmost part of Figure 6 shows the scores of students’ performance according

to their gender. From the analysis it resulted that the boys scored 4.5 units higher than the
girls. However, the sample was quite unbalanced and female students greatly surpassed
the male students (31 girls, 7 boys). Therefore, the difference was not statistically
significant (p=0.515, ns). However, it should be reported that male students seem to
handle better the lexical and syntactic need of the pseudocode representation, while on
the other hand the difference while using the visual representation presented by the
flowchart is very small in favour of the female students.

Finally, certain repeated errors and misconceptions were observed during the data
analysis, both at an interaction and at a conceptual level, as well as repeated resolution
strategies of the exercise. Some students using the VFC experienced difficulties while in
the process of saving their solution. In addition, the process of connecting two objects
posed some difficulties to the students, since they had to select the two objects and
subsequently select the command ‘connect’. On the other hand, when they decided to
remove a connection, they claimed that there was not clear feedback explaining whether
the connected object would be deleted as well, or not. In addition, in some cases the
select case object was correctly used but reversely connected, thus leading to inverted
algorithm behavior.

As far as Language Interpreter is concerned, some students used mixed English
and Greek Language to solve the activity, despite that it was pointed out to them that they
had to use English only. For instance, a variable initially described using English
characters in the beginning of the algorithm, was afterwards expressed by using the
corresponding letter of the Greek alphabet. As a consequence, the algorithm was not able
to recognize the variable and thus, it was not executed. In addition, the message error
occurred in the ‘Language Interpreter’ environment for letters common in Greek and
English Language (Invalid identifier: ‘K’) confused them and sometimes distracted them
from the solution’s definition.

Concerning the pseudocode’s syntactic issues, problems with the correct usage of
quotation marks and the command "Write" appeared, which are in line with other similar
studies (Putnam et al., 1986). In many cases, a student wanted to present the value of a
variable, but instead the name of the variable was presented. That is, because the variable
was put inside quotation marks, as it is presented in the pseudocode extract presented in
Table 3.

Table 3. Extract of an algorithm with wrong use of quotation marks

 PROGRAM Travel cost calculation
 VARIABLES s , j
 INTEGER: x
 START
 s=15
 j=165
 READ x
 IF x = 1 THEN
 WRITE "You pay j-s"
 ELSE_IF x = 2 THEN
 WRITE "You pay j-2s"
 ELSE_IF x = 3 THEN
 WRITE "You pay j-3s"
 ELSE_IF x > 3 THEN
 WRITE "INVALID STUDENT NUMBER"
 END_IF
 END

Another erroneous usage of quotation marks leads to double appearance of a
required value. For instance, the students wrote: Write «150», j, where 150, is the actual
value of the variable j. Moreover, there was some confusion regarding the command
“Read”. Frequently, students used the command not only for variables, but also for
constant values. With regard to the constant values, even though they had assigned a
description as a constant value, in the algorithm they requested an input, thus depicting
erroneous concept comprehension. Putnam et al., (1986) as well as Dagdilelis et al.
(2004) report similar difficulties in previous studies, for the “Read” command. Problems
also occurred with the syntax of Selection case, since some times the ‘end_if’ statement
was omitted, leading to algorithm execution denial (Hoc, 1983).

Conclusions

In the present study two alternative learning environments were presented,
‘Visual Flowchart’ which uses flowcharts and ‘Language Interpreter’ which uses

pseudocode, aimed to support learning of basic programming skills. Subsequently, a case
study involving 38 students separated into two groups using one of the aforementioned
educational tools towards solving a suitable learning activity is presented. No significant
difference in the students’ performance was found. In addition, the presented research
showed that neither the school stream followed in high school nor the gender of the
participants influenced the students’ performance on the presented activity. The
conclusions of the present study are in contrast to the research that has taken place in the
past (Scanlan, 1987, Crews and Ziegler, 1998), which compared usage of flowcharts and
pseudocode to educate novice programmers, and wider adoption of flowcharts was
depicted.

The lack of statistically significant difference among the two groups could be
attributed to the non complicated nature of the given activity. Flowcharting is better
suited for visualizing complex algorithms, but in the study presented in this paper, this
was not the case. In addition, once a program is expressed in the form of pseudocode, it is
then easier to carry out slight modifications while experimenting with its behavior. On
the other hand, flowcharts are considered ideal for visualizing some of the fundamental
control structures employed in computer programming, thus compensating the advantage
of easier modification of algorithms expressed in pseudocode.

Concerning the participants’ reflection upon their experience, there was no
significant difference in the students’ subjective preference in one of the two tools. Both
of the tools were considered to be usable and suitable for novice programmers to develop
an understanding of flowcharts and pseudocode in creating algorithms. The activity was
considered to be interesting, suitable and comprehensible for the introduction of
Computer Programming, “flowcharts” and “pseudocode”. Finally, the majority of the
participants, considered both programs suitable for the introduction in Computer
Programming. The aforementioned ascertainments, point out that the presented tools
could present a useful learning experience to novice programmers. In addition, since the
tools are complementary by nature they could be introduced together in suitably designed
activities of increasing difficulty. Introduction of both tools confronts with Kolb’s (1984)
view of experiential learning, which states that four different students’ learning
approaches should be supported: active experimentation (learning through doing),
concrete experience (learning through feeling), reflective observation (learning through
watching and listening), and abstract conceptualization (learning through thinking).

However, it should be stressed out that the findings of the research are dependable
from the type of the activity. The procedure of designing and writing a program includes
five discrete stages, namely 1) Analyze the Problem, 2) Design a Solution Plan, 3)
Construct an Algorithm, 4) Implement the Algorithm and 5) Test and Debug Algorithm
(Crews and Ziegler, 1998). The presented study mainly focuses on the third and on the
fourth stage. Therefore, it is difficult to generalize the findings of the study without
caution. A different activity, involving serious debugging could differentiate the
effectiveness of the two tools, from a students’ perspective.

As for future work, longitudinal studies of the effect of the different representations in
the frame of an introductory, first semester academic course in Computer Science is
planned. Such a study could also provide insight for the extent to which the acquired
programming skills are retained in the long term. In addition, subsequent targeted studies

aimed on teaching different programming structures are considered important to
investigate possible variation on the obtained results.

References

Atwood, M.E. and Ramsay, H.R. (1978), Cognitive structures in the comprehension and
memory of computer programs: an investigation of computer debugging. Alexandria,
VA: U.S. Army Research Institute, TR78A21.

Brooke, J.B. and Duncan, K.D. (1980a), “An experimental study of flowcharts as an aid
to identification of procedural faults”, Ergonomics, 23(4), pp. 387-399.

Brooke, J.B. and Duncan, K.D. (1980b), “An experimental study of flowcharts as an aid
to identification of procedural faults”, Ergonomics, 23(4), pp. 1057-1091.

Bayman, P. and Mayer, R. E. (1988), “Using conceptual models to teach BASIC
computer programming”, Journal of Educational Psychology, 80(33), pp. 291-298.

Blackwell, A., Whitley, K.N., Good, J. and Petre, M. (2001), “Cognitive Factors in
Programming with diagrams”, Artificial Intelligence Review, 15(1), pp. 95–114.

Bohl, M. (1971), Flowcharting Techniques, Science Research Associates, Chicago.
Brusilovsky, P., Calabrese,E., Hvorecky,J., Kouchnirenko, A. and Miller, P. (1997),

“Mini-languages: a way to learn programming principles”, International Journal of
Education and Information Technologies, 2 (1), pp. 65–83.

Carlisle, M. C., Wilson, T. A., Humphries, J. W. and Hadfield, S. M. (2004), “RAPTOR:
Introducing programming to non-majors with flowcharts”, Journal of Computing
Sciences in Colleges, 19(4), pp. 52-60.

Chang, S. K. (1990), Principles of Visual Programming Systems. Englewood Cliffs,
Prentice-Hall, New Jersey.

Crews, T. and Ziegler, U. (1998), “The flowchart interpreter for introductory
programming courses”, Proceedings of FIE '98, pp. 307-312.

Cunniff, N. and Taylor, R.P. (1987), “Graphical vs. textual representation: An empirical
study of novices’ program comprehension”, in Olson, G. M., Sheppard, S. B., Soloway,
E. (eds.), Empirical Studies of Programmers: Second Workshop, pp. 114–131.

Cunnif N., Taylor, R. P., Black J.B. (1989), “Does programming language affect the type
of conceptual bugs in begginers’ programs? A comparison of FPL and Pascal”. In
Soloway, E. and Spohrer, J.C. (Eds.), Studying the Novice Programmer. Hillsdale, NJ:
Erlbaum.

Dagdilelis, V., Satratzemi, M. and Evangelidis, G. (2004), “Introducing Secondary
Education Students to Algorithms and Programming”, Education and Information
Technologies, 9(2), pp. 159–173.

Fowler, L., Allen, M., Armarego, J. and Mackenzie, J. (2000), “Learning styles and case
tools in software engineering”, In Herrmann A. and Kulski, M.M. (eds), Flexible
Futures in Tertiary Teaching. Proceedings of the 9th Annual Teaching Learning Forum,
pp. 169-180.

Green, T.R.G. (1989), “Cognitive dimensions of notations”, in Sutcliffe, A. and
Macaulay, L. (eds.) People and Computer, Cambridge University Press, Cambridge,
pp. 443 – 460.

Kolb, D. (1984), Experiential Learning: Experience as the Source of Learning and
development, Englewood Cliffs, Prentice-Hall, New Jersey.

Kolikant, Y. B.-D. and Ben-Ari, M. (2008), “Fertile Zones of Cultural Encounter in
Computer Science Education”, Journal of the Learning Sciences, 17(1), pp. 1 — 32.

Komis, V. (2001), “Didactics of Informatics: from the Formation of the Scientific Field
to the Conjunction among Research and School Practice”, in Manolopoulos, Y. and
Evripidou, S. (editors), Proceedings of 8th Panhellenic Conference on Informatics with
international participation, Greek Computer Society, University of Cyprus, November
2001, pp. 463-471.

Komis, V. (2005), Introduction to Didactics of Informatics, Kleidarithmos Press, Athens
(In Greek).

Larkin J.H. and Simon, H.A. (1987), “Why a diagram is (sometimes) worth 10,000
words”, Cognitive Science, 11(1), pp. 65 – 100.

Hoc, J.M. (1983), “Analysis of beginners’ problem-solving strategies in programming”,
In Payne S.J. and van der Veer, G .C. (eds): The Psychology of Computer Use,
Academic Press, London, pp. 143 – 158.

Nardi, B. (1993), A Small Matter of Programming : Perspectives on End - User
Computing. MIT Press, Cambridge, MA.

Newell, A. and Simon, H.A. (1972), Human Problem Solving, Englewood Cliffs,
Prentice Hall, New Jersey.

Putnam, R. T., Sleeman, D., Baxter, J. and Kuspa, L. (1986), “A summary of
misconceptions of high school BASIC programmers”, Journal of Educational
Computing Research, 2(4), pp. 459-472.

Sajaniemi J. and Kuittinen, M. (2005), “An experiment on using roles of variables in
teaching introductory programming”, Computer Science Education, 15(1), pp. 59-82.

Scanlan, D.A. (1987), “Data-structures students may prefer to learn algorithms using
graphical methods”, Proceedings of the eighteenth SIGCSE technical symposium on
Computer science education, St Louis, pp. 302-307.

Scanlan, D.A. (1987b), A niche for structured flowcharts. 15th ACM Annual Conference
on Computer Science, St. Louis, pp. 408.

Scanlan, D. A. (1989), “Structured flowcharts outperform pseudocode: An experimental
comparison”, IEEE Software, 6(5), pp. 28–36.

Shneiderman, B. (1980), Software Psychology: Human Factors in Computer and
Information Systems, Winthrop, Cambridge, MA.

Shneiderman, B., Mayer, R., McKay, D. and Heller, P. (1977), “Experimental
investigations of the utility of detailed flowcharts in programming”. Communications of
the ACM, 20(6), pp. 373-381.

Thomas, L., Ratcliffe, M., Woodburry, J. and Jarman, E. (2002), “Learning styles and
performance in the introductory programming sequence”. Proceedings of the 33rd
SIGCSE Technical Symposium on Computer Science Education, Cincinnati, Kentucky,
pp. 33-42.

Tselios, N., Georgopoulos, A., Politis, P., Pyrza, F., Fanikos, A., Koubouri, D. and
Komis, V., (2007), “Studying the use of multiple representations in the frame of
educational programming environment”, Themes in Education, 8(1), pp. 3-24.

