
Collaborative Problem Solving using an
Open Modeling Environment

C. Fidas1, V. Komis1, N.M. Avouris1, A Dimitracopoulou2

1University of Patras, Patras, Greece
2 University of the Aegean, Rhodes, Greece

fidas@clab.ee.upatras.gr, komis@upatras.gr, N.Avouris@ee.upatras.gr,
adimitr@Rhodes.Aegean.gr

ABSTRACT
This paper presents ModelsCreator version 3 (MC3) an environment that supports collaborative building of various
kinds of models. MC3 is an environment that permits synchronous interaction of students at a distance who
collaborate in building models out of primitive objects. The open character of MC3 means that students have access
to an open set of primitive objects that can be used for building these models. A result of this characteristic is that
the collaborating partners may reason using heterogeneous sets of primitive objects, in order to obtain a solution. In
this paper we concentrate on the architecture of MC3 and the basic functionality of the environment. In particular we
study the effect of the open character of the environment in collaboration and problem solving. Through
experimentation it is demonstrated that the users of MC3 can have rich interaction in order to build or exchange at
run time the necessary primitive objects for model building.

Keywords
Computer supported collaborative learning, open learning environments, computer supported collaboration, semi-
quantitative modeling

INTRODUCTION
The importance of modeling of phenomena, activities or systems in learning has been widely recognized (Bliss,
1994). A number of software tools have been developed during the last years that support learning through
modeling. These software environments mostly concern mathematical models of physical phenomena (Teodoro,
1997), while other modeling activities have also been proposed, like creation of concept maps, test of logical
propositions, modeling of ecological and other complex phenomena (Soloway et al. 1996), etc. A special case of
modeling tools and activities relate to semi-quantitative modeling, proposed by scientists from science education
and psychology fields (Bliss 1994). Their purpose is to support children’s reasoning and help them have access to
quantitative reasoning in a progressive way (Ogborn, 1998). Semi-quantitative models may involve countable
concepts, however they do not reflect their values. The reasoning of the students engaged in semi-quantitative
modeling involves studying in a complex system how the approximate value of a concept or object property has an
effect on other properties, which may in turn, affect other parts of the model.

MODELSCREATOR (MC) is a modeling learning environment, under development and experimental use during
the last few years (Dimitracopoulou et al. 1999, Komis et al. 2001). MC supports expression of different kinds of
models mostly for students 11-16 years old. It integrates dynamic models: semi-quantitative models, quantitative
models, and executable decision making models as well as static qualitative models (concept maps), with special
emphasis on semi-quantitative modeling. These models meet the requirements of many curriculum subject matters,
permitting interdisciplinary use of the modeling process. MC puts great emphasis on visualization of the modeling
entities, their properties and their relations. Visualization is crucial in supporting the reasoning development of
young students and favors the transition from reasoning over objects to reasoning with abstract concepts (Teodoro
1997). This feature is extended also to the simulation of executable models allowing their validation through
representation of the phenomenon itself in a visual way and not in an abstract one, as it is usually the case.

The most recent development of ModelsCreator (MC version 3.0, MC3), reported here, has been in two directions.
One concerns its transformation to an open modeling system and the second its support for synchronous and
asynchronous collaborative development of models by distant groups of young students. This paper focuses on
presentation of these new features, in terms of system architecture and functionality and the implications of their
inter-relation.

The importance of the open character of the MC3 environment on collaborative modeling is discussed first. In a
typical closed collaborative problem-solving environment the students have at their disposal a common set of basic

constitutive elements, out of which they construct their representations or the jointly developed models. These
primitives can be rectangles, ellipses, squares, different statement types, etc., as it is the case in Belvedere (Suthers
and Jones 1997), COLER (Constantino and Suthers, 2001), C-CHENE (Baker and Lund, 1997), Modeler Tool
(Koch et all 2001). So common understanding is based on the existence of these common basic primitives. In
contrary, in an open learning system like MC3, one student before entering in a specific collaborative session may
build individually a new set of primitive elements to which meaning can be assigned. The student is provided with
adequate tools (editors) that permit creation of these new entities or modification of existing ones. As a
consequence, collaborating students may find themselves in possession of heterogeneous sets of primitive objects.
Also compound primitive objects, like partial models can be built that can be associated with the new ones in
multiple modes. Even if the collaborating partners share a problem definition and given data set, one or more of the
partners may have access to additional basic constructs or compound primitives, making the process of grounding of
interaction and common understanding particularly complex. These open collaboration environments, as they
become available, set new challenges in collaborative problem solving, necessitating new functionalities,
(Dillenbourg et al., 1995, Muehlenbrock et al., 1998) and eventually resulting in more semantically rich patterns of
interaction and grounding mechanisms (Baker et all 2001).

This paper focuses on the architecture and the main functionality of the open collaborative MC3. We present the
characteristics of the environment that make synchronous model building possible. Special emphasis is put in the
collaboration protocols supported and in the new objects creation functionality. Extracts of interaction during
problem solving are included in this paper that demonstrate some effects of the heterogeneous concept libraries on
interaction and problem solving.

Figure 1. The ModelsCreator 2 User Interface during model building

COLLABORATIVE MODELING WITH MODELSCREATOR 3.
MC3 permits the collaborative building, testing and validation of models. The main functionality of the
environment relates to the Activity Space where the models can be built, shown in figure 1. This space contains
tools necessary to construct models, tools to represent models in alternative ways and tools that can run the models.
In order to design a model, students have to insert primitive entities, set their properties and create relations between
them. A part of the library of available primitive entities is shown on the left of the activity space, in figure 1,
while on the right there is the list of available (semi-quantitative) relations. These relations link concrete objects
properties or concepts and express variation of properties’ values and direction of this variation. The relations are
represented through symbols. For instance, the relations of analogy or inverse analogy are represented by the
symbols:__, __, (see figure 1) expressing reasoning such as: “If one entity increases, the other one might increase,
or decrease”. The students can use a variety of simple relations that correspond to hidden algebraic formulas. The
entities can represent concrete concepts with iconic representation that can change as the properties of the object
change (e.g. the amount of water in a container or the amount of oxygen participating in photosynthesis). They can

Library of

primitive
objects

Collaborative

activity
space

Library of

semi-
quantitative

relations

Chat tool

Control of
Action-

enabling key

also represent abstract concepts with mostly textual or iconic representation. For each entity, one or more properties
have to be determined. During model testing the properties’ values affect the appearance of the objects introduced in
the activity space, representing the concepts. For instance, the volume of the water (variable) in a container (object)
affects the representation of the container. The students can link entities experimenting with the available semi-
quantitative relations.

MC3 can be used either as a stand-alone learning environment, or as a collaborative modeling environment. The
latter is presented in more detail here. The collaboration is enabled both through asynchronous and synchronous
interaction of distance partners. The integrated chat facility, shown on the right of figure 1, permits exchange of
free-text messages between collaborating partners. Also a synchronous and asynchronous object exchange tool has
been implemented. If the recipient of a compound or a primitive object is on-line during transmission, the object is
sent directly to the receiving partner. If the recipient is off-line, the model or object is stored in an ftp-server and
when the recipient is connected, the transmission is completed, as discussed in the system architecture section
bellow.

The Activity Space can become a drawing space of synchronous collaboration, in which one of the two
collaborating partners can insert primary objects (concepts and relations), through direct manipulation. The
supported protocol of interaction is described here: When connection between two partners is established, following
a “request for collaboration” of one partner, accepted by the other, a copy of the action space is build and maintained
in both parts involved until the connection is terminated by one of the two partners. The two partners can exchange
roles, playing either the passive or the active role. The active partner is the one who can manipulate objects in the
activity space. These actions generate messages transmitted to the passive partner, thus reproducing the same effect
at the screen of both workstations. So MC3 supports a shared WYSIWIS (what you see is what I see) environment.
A mechanism is established for exchange of roles. The metaphor used is that of “passing the key”. The holder of the
“action-enabling key” is the active partner. Through this key request/ key accept/ key reject protocol the active role
can change at any point during collaboration, provided that the passive partner requests the key and the active
partner accepts the request. The key-passing tool is shown on the top right corner of figure 1. An implication of this
“key exchange” protocol is that deadlocks can be created in cases when the active partner cannot proceed with
problem solving and at the same time refuses to pass the key over to the other partner. Such situations did occur
during the reported experiments. Despite this, the protocol maintains clear semantics of actions and roles in the
shared activity space and therefore is considered essential part of the architecture. This consideration seems to be in
agreement with the view expressed by researchers of similar environments, see (Soller, 2001).

Variations and enhancements of the above standard protocol involve firstly the possibility of creation of “invisible
components” by one of the partners, thus modifying the semantics of the WYSIWIS environment, secondly a
mechanism has been developed for interleaving text messages and action by a deictic tool that has taken the form of
sticky notes in the activity space (see Fidas et al. 2001). Additionally alternative protocols for controlling
ownership of parts of the model have been devised, so that collaborating partner cannot modify parts of the solution
that have been built by another partner. In the last section of the paper an experiment studying the effect of variation
of solution ownership protocol on problem solving is described

A component of MC3 that contributes to its open character is the Editor of primitive objects. The students or the
teachers can define primitive objects and insert them in their object libraries or in public repositories. Properties are
assigned to these objects and iconic representations that correspond to range of values of the defined properties. Also
hidden functions can be defined that interrelate the properties of the object, thus providing it with “behavior”. In
figure 3, editing of property “Water” of object Plant in a photosynthesis library is shown using this Editor. The
implication is that the libraries of objects in possession of collaborating students can differ, necessitating new
patterns of interaction during problem solving, as discussed in the following sections.

An underlying property of the Editor relates to the global unique identifier (GUID) given to each new object built,
so that different objects can be distinguished in a common repository. The approach followed in MC3 is that
objects receive unique identities locally upon creation without the support of a central broker: Every object which is
built is allocated a unique GUID by an algorithm which produces a 128 – bit number based on the IP address,
network card number and the local time and date of the host. The same algorithm has been previously used with
success to identify global and unique software components.
In the following section a more technical description of MC3 is provided, outlining the design of MC3 that
implements the described functionality.

.

Figure 3. Primitive Object Editor

MODELSCREATOR 3.O ARCHITECTURE
In an open collaborative modeling environment the two main functionalities of the system relate with (a) building
and sharing new primitive objects and (b) collaboration support in the presence of heterogeneous libraries of
primitive objects. In this section an insight into the architecture of MC3 collaborative system is given. An overview
of the system architecture is provided in figure 4, presenting the main functionalities of the system described in this
paper. A modular approach has been followed, in order to reduce the complexity of the design. The aim of each
module is to provide specific services to the modules with which it is connected, isolating the details of the
construction of these services.

In figure 4 two collaborating host installations of MC3 and their Server are shown. The Server functionality is to
manage the users' accounts, to provide database facilities for objects or models for asynchronous communication
among the users. Also a facility of web-based search of public object repositories through the Http Sever is enabled.
While full specification of this architecture is beyond the scope of this paper, some typical interaction scenarios are
described in this section that illuminate the functionality of the architecture.

(1) User Login
1a) User login information is sent from the User Host to the Broker Host Interaction Agent (HIA)

1b) The HIA informs the user’s database on the Server about the user login.

1c) Upon login, a check is performed if there are any objects to be dispatched to the user .If there are any, they are
sent through the ftp modules. (1d,1e).

(2) Exchange of objects and models

The exchange tool is a synchronous/ asynchronous communication tool. If the recipient of the object or model is
on-line during the transmission the file is sent directly to the receiving partner through the hosts ftp-modules (2a). If
the recipient is off-line the ftp module of Host A sends the file and the user-id of the recipient, to the Broker ftp
module (2b). Subsequently, the Broker ftp module stores the file and updates the User’s Database (2c). The next
time the recipient is logged in the transmission is completed, as discussed in (1).

Figure 4. The MC3 system architecture

 (3) Object publishing

New objects can be published to commonly available repositories. The key to the attainment of an open
environment is the separation of the educational material from the environment. In the MC3 architecture each object
is a file, which carries all the information needed in order to be used in the MC3 environment. Interoperability is
achieved through the fact that each published object supports a standard COM interface and therefore it can be
imported in every application which supports this standard. Moreover each object has in its heading a meta-level
description containing keywords which describe the object in a conceptual way and can be easily searched by the
users, as described in case (4).

This case describes the scenario of explicit publishing of primitive objects or entire models by a user in the Broker
database. This permits sharing of objects by communities of students and teachers.
 3a) The FTP Module of Host B sends the file to the Broker FTP Module. L

3b) The Broker FTP Module stores the object and updates the object’s database about the new object. The files are
stored in folders named after the object Global Unique Identifier.

Figure 5. Web interface to search published material

(4) Search in published material

1e

4d,

1a

3a

2b

BROKER

2a

1b 1c
1d

Host interaction agent
 FTP Module

 HTTP Server

4b

4c

Users
 Database

Objects
 Database

4a
4d

FTP

Module

Mediator

Chat

Web Browser

Main
Module

Broker interaction

Collabor.
 Interaction
 Database

 Mediator

Chat

Bro ker interaction

FTP
 Module

Main
Module

Collabor.
 Interaction
 Database

2c
 3b

server

Host A
Host B

The created and published material can be searched through a web interface. The user sends through the browser an
HTPP request and the keywords, which describe conceptually the searched objects (4a) to the http server. After
searching in the Object’s Database (4b) for objects which best address the users needs, the results are send back to
the user (4d). In figure 5 a primitive object is shown as a search result. Eight (8) frames, corresponding to different
values of the attribute sun can be seen in this figure.

 (5) Logging of interactions

History of interaction during problem solving can be stored in a database, located in the student host, see figure 4.
The log files contain actions in the activity space and exchanged text messages. These are organized according to the
user, the type of interaction (e.g. proposition, insertion, rejection), the primitive object involved and the solution
(the produced model). Having the interaction stored in a database means that it is easy to obtain structured
information on interaction through appropriate queries. An analysis model (Avouris et al. 2001) has inspired the
structure of this database. In figure 6 a typical view over interaction logging data is shown. In this picture, one can
see that hyperlinks relate different views of interaction data. The capability of the environment to log all user
activity in the Activity space together with the synchronous/ asynchronous communication actions, makes MC3 a
powerful testebed for collaborative problem solving research, as described in (Komis et al., 2001).

Figure 6. Logging of interaction data presentation

 (6) Synchronization of Shared Activity Space through the Mediators

Most of the existing CSCL systems achieve synchronization among the students’ activity spaces according to a
server-client model (replicated architectures). The server monitors the status of the shared activity space and manages
its consistency by informing the clients about the changes through message passing.

According to our approach synchronization is achieved using a peer-to-peer protocol, without intervention of a
server. The mechanism is based on a set of reactive agents, which try to achieve synchronization with the
corresponding agents of the peer host based on a stimulus–response model. So in a joint problem solving activity
each object and each relation introduced, act as reactive agents. The behavior of each agent depends on whether it is
on the active user’s side or on the passive user’s side. If it is on the active user’s side it monitors user events that
are related to the particular object (movement, changing of properties, deleting etc.), and sends these events to the
equivalent agent on the passive user’s side. This is achieved through the Mediators, shown in figure 4. The size of
these messages is variable and depends on the kind of actions of the active user. However in most cases it remains
very small, permitting good run time performance. When the Mediator of the passive user's side receives the
message, it decodes it and informs the equivalent agent who acts accordingly.

 (7) Collaboration of users with heterogeneous libraries of objects

The previously discussed case (6) necessitates that the objects present in the Activity Spaces of two collaborating
partners are identical. However, as discussed earlier, there is a possibility that two users are in possession of
different primitive library objects, due to the open architecture of the MC3 environment. So there can be a case
when the active user A adds an object into the shared activity space, which does not exist in the library of user B. In

A hyperlink to
an object-view
of interaction
data

this case it is necessary to update the library of user B at run time with the missing object before proceeding any
further. This is done transparently from the users as follows: When user A inserts the new object Oi in the Activity
Space, Mediator A informs Mediator B about the addition of the new object, sending the appropriate message with
the object’s GUID. Mediator B searches the local Object Library for Oi If this object does not exist on host B then
Mediator B asks A to send a copy of object Oi before proceeding any further (t1). Mediator A sends the object,
through its ftp module, and waits (t2). During this activity the user actions in the shared Activity Space are
suspended and a message is displayed that the peer library is updated. After the sending is complete Mediator B
informs Mediator A that it has received the object and the activity can proceed.

CASE STUDY OF COLLABORATIVE PROBLEM SOLVING

In the previous sections the main functionality and architecture of MC3 has been described. In this section
experimental use of the developed prototype is presented. Two experiments are briefly presented and discussed.
They concern usability and cognitive questions in relation to introduction and exchange of new entities during
collaboration and ownership control of newly introduced entities in the activity space.

Study (I) The objective of this experiment was to monitor interaction of students in the case of heterogeneous
libraries of primitive objects thus studying the effect of the open architecture on problem solving. The experiment
took place in the frame of the graduate course of the Early Childhood Education Department, where four graduate
students were asked to study and model collaboratively the factors affecting plant growth using MC3. Various
primitive objects were made available relating to the photosynthesis process. Two students collaborated in each
experiment. In case (A) some key primitive objects were missing in one of the two partners’ library, while in case
(B) key objects were missing from both students’ libraries.
A general conclusion was that in both cases the groups managed collaboratively to produce a meaningful solution.
In both cases there was rich interaction on availability of necessary primitive objects and both groups managed to
identify missing key objects. In the case of group (A) there have been incidents in which the active partner failed to
identify a primitive object and asked the partner through the chat tool to look for it in her library. Once the object
was identified by the partner, the key possession has changed in order for the owner of the primitive object to insert
it in the activity space. In the case of group (B) in two cases the partners decided that a necessary object was
missing and they proceeded with building it at run time and incorporate it in their joined model. Extracts of
interaction and the produced solutions are included in the following.

Table 1. Extract of interaction between partners of Group (A)
1 User1 :Chat :now we need some water
2 User2 :Chat :DO YOU HAVE SOME OBJECT LIKE WATER?
3 User1 :Chat :I look now
4 User1 :Chat :yes I have a spring
5 User2 :Chat :ASK FOR THE KEY AND INTRODUCE IT PLEASE
6 User1 :Request key
7 User2 :Key Request Accepted
8 User1 :Insert Object : Spring
9 User1 :Chat :what relation should I put between water and

plant?
10 User2 :Chat :MORE WATER MEANS MORE GROW
11 User1 :Chat :ok

From this extract it is evident that user 2 is in search of an object that cannot find in the local library. The user
takes the initiative to ask the partner to look for it providing some precise verbal description (“an object like
water”). The action key is conceded to user1 in order to achieve the objective of introducing an object with the
required property. It seems that there is an agreement on a common objective between the two partners and that the
chat tool is extensively used in this extract in order to identify the required object.

In the case of group (B) there have been two incidents during which the partners ended in deadlock, after searching
for a specific object. They agreed to build a new object and this was done at run time. An extract of interaction that
lead to new primitive object creation is included in the Table 2. From Table 2 it is evident that User 1 is searching
for an “object like rain”. However despite the fact that this user has taken the initiative to search for an object of
these characteristics and fails to find one in her library or the partner’s library, proceeds with suggesting of building
one to User2. This is perhaps due to the disparity of skills of the two partners. User 2 was more experienced user of
the environment and this was known to User1. So there was no conflict on who would build the missing object.
There has been only a comment by user1 on the aesthetics of the bitmap of the developed new object. (action14).

Table 2 Extract of interaction between partners of Group (B)

1 User1 :Chat :what we should add?
2 User2 :Chat :YOU SAID SOMETHING ABOUT RAIN
3 User1 :Chat :yes
4 User1 :Chat :some rain
5 User2 :Chat :DO YOU HAVE AN OBJECT LIKE RAIN?
6 User2 :Chat :NO
7 User1 :Chat :do you want to try creating one object like

this?
8 User1 :Chat :ok
9 …. (User2 uses the editor)
10 User1 : New Object:C:\rain.obj
11 User2 : Insert Object:rain
12 User2 :Chat :I THINK IT IS VERY BEAUTIFUL
13 User2 :Attribute :rain
14 User1 :Chat :_ think you are as good as me at drawing :)
15 User1 :Chat :but we can imagine that this is rain ...

In Figure 7 the solution of group (B) is shown. In this figure the distinct style of the two newly introduced objects
can easily be identified.

Figure 7. Group (B) solution

Study (II) The second experiment involved 14 students of the Undergraduate course on Internet programming of the
Electrical & Computer Engineering Department in the frame of a laboratory session. The main objective of this
study was to evaluate the effect of solution ownership protocol variations on collaboration and interaction. Seven
groups with similar characteristics were formed, collaborating in pairs. The problem-solving task involved the
collaborative building of a diagrammatic model concerning the structure of the Internet. Two alternative
collaboration protocols were used; Groups (A) had no ownership control while groups (B) maintained ownership of
introduced objects, so partners were not allowed to modify objects introduced by their peers.

In the case of groups (B) every time a partner needed to modify an object of different ownership, a negotiation phase
had to be initiated concerning the purpose of the modification, in order to convince the object owner on the
proposed modification. This ownership control mechanism was effective in inhibiting modifications of created
objects by other partners. So in one instance of group A, when a partner started deleting objects in the common
space, the owner replied with an angry text message:

WHY ARE YOU DELETING THEM THEY NEED TO BE THERE!! (in capitals for emphasis)

However it should be observed that the dialogues of group B were longer, since one partner requesting a
modification of somebody else’s part of the solution needed to negotiate the modification first.

In the extract included in Table 3 (group B4) partner 1 attempts to convince partner 2 to modify part of the solution:

As one can observe from this extract, partner 1, in possession of the key, needs to change a part of the solution that

New objects

is owned by partner 2. In order to affect the modification, the partner needs to persuade p1. The dialogue is
semantically rich, however the chat tool is perhaps not the most appropriate means for such dialogues, resulting in
frustration of the users.

Table 3. Extract of interaction of group B4

CONCLUSIONS

An innovative environment enabling collaborative modeling activities has been introduced in this paper.
ModelsCreator 3.0 (MC3) supports semi-quantitative, quantitative and qualitative reasoning during modeling
activities of young children collaborating at a distance. MC3 presents innovative features briefly presented here.
Synchronous modeling activity can be performed at a distance using MC3, based on a mechanism of light multiple
processes (reactive agents) in collaborating hosts.

MC3 is an open modeling system since it provides the possibility through specific editors and open libraries to
create new entities with various properties and behavior as well as new compound entities, models and problems.
The MC3 system architecture and functionalities that enable this open character have been presented and discussed
here: (i) A repository of publicly available modeling entities has been created and made available to the learners
community in a common Server, (ii) Search mechanisms and web-based interface to this repository has also been
developed, (iii) provision has been made to support unique identities (GUID) of any developed object (entities,
models, problems) at the local host level, and entities exchange mechanisms have been established (iv) user
protocols of collaboration for synchronization of shared activity space and online update of users’ heterogeneous
libraries have also been defined.
As a result, a software environment has been built, implementing the proposed architecture. This environment
presents many interesting new features that need to be extensively evaluated. The first phase of this evaluation,
reported briefly here, involved experimentation with specific functionalities. One experiment studied the effect of
heterogeneous or missing primitive object libraries in problem solving. The result of this experiment was that the
available functionality and tools allowed students to proceed with building models by collaboratively searching for
missing primitive objects or develop new ones at run time, when required. One remark relating to this experiment
concerns the extensive use of text-based messaging tools in this cognitively demanding activity. A limitation of the
reported study is that the students that participated in this experiment were graduate students who could use the chat
tool effectively and had developed typing and language skills. Something yet to be proven is the effect of this new
degree of complexity on students of the target age group of this modeling tool, that is young students (age 11-16).
A second experiment involved variations on the solution ownership protocols. It was proven that even slight
variations of the developed interaction protocols affect the use of the tools and pose new demands in terms of
cognitive tasks requested by the users. More experiments and investigations are currently planned, exploring
grounding mechanisms during individual and collaborative construction of new primitives (entities and sub-models)
for problem solving and modeling in sciences. The creation and use of these constructed primitives during various
collaborative modes constitutes also a research direction for our team. Additionally an extended large scale use by
learners communities of five European countries is planned in the frame of a new European project.

In conclusion, it seems that this new generation of complex collaboration support environments like open MC3,
provides us with new enhanced capabilities and collaborative situations to be studied, creating a new degree of
complexity in computer-supported collaborative problem solving. Their effective investigation poses new challenges
to our research community and eventually necessitates new advances of the theoretical foundation of the field.

ACKNOWLEDGMENTS
Financial support has been provided by the IST2000/ModelingSpace Project of the European Union and the
ModelsCreator/Pinelopi Program of the Greek Ministry of Education, under which the presented software
environment has been developed. Special thanks are also due to our students who assisted and participated in the
presented experiments.

REFERENCES

 55 : 35 1 Chat You have connected two Routers; I think that you should
connect the WANs.

 56 : 27 2 Chat You are right, but one does not need to link the two Bridges
in order to affect the connection?

 57 : 19 1 Chat Right! However in the diagram we have grouped the networks in
WANs so we have to do it through them!

 57 : 47 2 Chat OK I need the key to change them
 57 : 51 2 Request Key

Avouris N., Dimitracopoulou A., Komis V. (submitted 2001). On analysis of collaborative problem solving: An
object – oriented approach, submitted to Int. J. of Interactive Learning Research.

Baker M.J. & Lund K. (1997). Promoting reflective interactions in a computer –supported collaborative learning
environment. Journal in Computer Assisted Learning, 13, 175-193.

Baker M.J., de Vries E., Lund K. & Quignard M (2001) Computer Epistemic Interactions for co-constructing
scientific notions: Lessons Learned from a five-years research program.Proc. 1st EuroCSCL 2001, pp.89-
96.

Bliss J. (1994). From Mental Models to Modelling in H. Mellar, J. Bliss, R. Boohan, J. Ogborn, C. Tompsett
(Eds). Learning with Artificial Worlds: Computer Based Modelling in the Curriculum, The Falmer Press,
London.

Constantino-Conzalez & Suthers D. (2001). Coaching Collaboration by Comparing Solutions and Tracking
Participation. 1st EuroCSCL 2001, pp.173-180.

Dillenbourg P., Baker M., Blaye A., O’Malley C. (1995). The evolution of research on collaborative learning. In
Spada E. & Reiman P. (Eds), Learning Human and Machine: Towards an interdisciplinary learning
science, pp. 189-211, Oxford: Elsevier.

Dimitracopoulou A., Komis V. Apostolopoulos P. & Politis P. (1999). Design Principles of a New Modelling
Environment Supporting Various Types of Reasoning and Interdisciplinary Approaches, in Proc. of 9th Int.
Conference of Artificial Intelligence in Education, IOS Press, Ohmsha, pp. 109-120.

Fidas C., Komis V., Avouris N.M. (2001). Design of collaboration-support tools for group problem solving,
Proceedings PC HCI 2001, December 2001, Patras, Greece.

Koch J.H. Schlichter J. & Trondle P (2001). Munics: Modeling the flow of Information in Organisation. 1st

EuroCSCL 2001, pp.348-355.

Komis V., Dimitracopoulou A., Politis P., Avouris N. (2001). Expérimentations exploratoires sur l’utilisation d’un
environnement informatique de modélisation par petits groupes d’élèves, Sciences et Techniques
Educatives, Vol. 8, no 1-2, pp.75-86.

Muehlenbrock, M.,Tewissen, F., & Hoope, H. U. (1998). A framework system for intelligent support in open
distributed learning environments. International Journal of Artificial Intelligence in Education, 9, 256-
274.

Ogborn J. (1998). Cognitive development and qualitative modeling, Journal of Computer Assisted Learning, 14,
292–307.

Soller, A.L. (2001). Supporting Social Interaction in an Intelligent Collaborative Learning System. Int. Journal of
Artificial Intelligence in Education,12, (in press).

Soloway, E., Shari, L. and Jaskson, S. (1996), Learning Theory in Practice: Case Studies of learner- Centered
Design, In Proc. CHI 96. Human Factors in Computing Systems, Vancouver, p. 189-196.

Suthers D. & Jones D. (1997), An Architecture for Intelligent Collaborative Educational Systems. In B. du
Boulay, R. Mizoguchi (Eds) 8th World Conference on Artificial Intelligence in Education (AIED’97), pp..
55-62.

Suthers D., (1999). Representational Support for Collaborative Inquiry, Proc. Of International Conference on
System Sciences,IEEE,Hawaii.

Teodoro V.D. (1997). Modellus: Using a Computational Tool to Change the Teaching and Learning of
Mathematics and Science, in “New Technologies and the Role of the Teacher” Open University, Milton
Keynes, UK.

Teodoro V. D. (1994). Learning with Computer-Based Exploratory Environments in Science and Mathematics. in
S. Vosniadou, E. De Corte, H. Mandl (Eds.), Technology -Based Learning Environments : Psychological
and Educational Foundations, NATO ASI Series, Vol. 137, pp.179-186. Berlin : Springer Verlag.

