
A Peer-To-Peer Architecture for Synchronous
Collaboration over Low-Bandwidth Networks

Meletis Margaritis, Christos Fidas, Nikolaos Avouris, Vassilis Komis
University of Patras, 26500 Rio Patras, Greece

{Margaritis, Fidas, N.Avouris }@ee.upatras.gr,
Komis@upatras.gr

Abstract. The need for peer-to-peer collaboration over the Internet is
increasing nowadays. There are many factors that make this task
particularly difficult. Software designers and developers often come
across the challenge of overcoming the raising technical and
organizational problems. These problems include mostly the limited
bandwidth of networks especially of dialup connections, but also the
presence of firewalls and proxy servers in intranets that inhibit peer-to-
peer communication. A flexible architecture needs to be defined that
overcomes these problems and permits a smooth collaborative
environment that would satisfy the needs of end users. This paper
describes a study on these problems and provides solutions accordingly
by defining the architecture of a peer-to-peer collaborative system
developed and used for real-time collaborative modelling activities.

1 Introduction

Peer-to-peer (p2p) computing applications seem to proliferate recently. Designing
such applications involves tackling serious technical and social challenges. According
to Lethin (2003), the technical advantages of such applications are fault tolerance,
performance, and security, while the possibility of powerful communication
technologies in distributed form, lead to new person-to-person interaction structures.
An especially interesting application of p2p technology is that of synchronous
collaboration systems, with many uses in work and education (Lopez and Skarmeta
2003). In this paper we discuss the main characteristics of such an environment
(ModellingSpace, MS) a distributed application, which comprises a suite of
interconnected tools to support collaborative modeling activities. MS is an
environment that supports individual and collaborative building of various kinds of
models. MS includes tools that permit building and editing of primitive multimedia
entities, building and exploring models that are constructed using these primitive
entities. MS supports synchronous and asynchronous interaction of users, collocated
or at a distance who collaborate in building models. The open character of MS means
that the users have access to an open set of primitive entities that can be used for
building these models.

Synchronous collaborative problem-solving is often based on a shared work surface
(Dix et al. 1998). As a result communication among partners is done through the
constructed artifact, found in this surface, e.g. a model under construction or the
representation of a solution to a given problem. This is done in effect when one users’
manipulation of the objects in this surface is observed by the peers. This indirect way
of communication can be as important as direct communication (Avouris et al.
2003a).

Various architectural decisions are related to the design of the shared work surface.
One possibility is to apply a strict WYSIWIS (what you see is what I see) approach in
the main work surface window. As a result the activity in this area is faithfully
reproduced in all users’ workstations. So most of communication and reasoning of
users is based on this shared viewpoint, which becomes the main grounding
mechanism of dialogue and through which eventually common understanding can
occur. However additional operations outside this shared workspace may also be
performed independently by partners involved, a model-level coupling approach
according to Suthers (2001). This way a more relaxed coupling of partners is
achieved.

Chat tool

Control panel

(a)

(b)

(c)

P

erform

a

control

operation

Act in the

shared

activity space

S

end

a text

message

Control panel

Chat tool

(a)

 (c)

 (b)

Fig. 1. Peer-to-peer Collaborative environment. The exchanged information concerns (a)
coordination control messages (b) shared workspace state-change control messages and (c) chat
messages.

Figure 1 shows a typical collaborative activity, which involves two partners at a

distance. These two partners interact through a reliable TCP connection, using the
socket interface for client to client communication. A set of primitives have been
developed, implementing the semantics of the protocols described in this paper. MS is
based on the concept of shared artifact, represented in a shared work surface. This
artifact can be a jointly built diagram like a concept map, a flow chart or an entity-
relationship diagram or a model simulating an activity or a phenomenon. In contrary
to some other collaboration applications, in which emphasis is in communication
(argumentation tools, decision making support tools etc.), in our case the distant
partners collaborate mainly by sharing the model in the work surface, which thus
becomes a cognitive space. In this case the communication through the artifact is
important, where one participant's manipulation of shared objects can be observed by

the other participants. A key requirement in this context is to support sharing of a
view of the model in synchronous modeling activities over low bandwidth
connections, as is often the case with individual users’ connections to the Internet. In
contrary to other shared workspace environments, like Microsoft NetMeeting, in
which heavy graphical information is exchanged among partners, in MS we use a
replication of the libraries of primitive entities and tools.

1.1 Types of exchanged messages

As a result of this architecture, three types of messages may be exchanged:
(i) Change-of-state messages, shown as (b) in fig.1, For example the following

message concerns move of object barell_2 to a new position on the screen, this is
transmitted to the collaborating peers and the local client engines affect the move of
the object.

<message>
 <ID>Move object</ID>
 <user>George</user>
 <objectID>barell_2</objectID>
 <attributes>
 <x>100</x>
 <y>250</y>
 </attributes>
</message>

(ii) In addition, support of direct communication among the participants is

achieved through an instant messaging tool (chat messages), shown as (c) in fig.1.
This is a communication mode that has been preferred to audio or video, which is
used in other synchronous collaboration environments, as it is more effective in low-
bandwidth connections. The effectiveness of this text-based communication has been
proven through a number of studies involving pupils of secondary education (Komis
et al. 2003), and higher education students (Avouris et al. 2003c). In these studies the
use of chat was supplementary to the observation of activity in the shared activity
space.

(iii) Finally control messages are exchanged which relate to coordination of the
activity, like messages concerning locking of the activity space by one partner. These
are shown as messages (a) in fig.1. A more thorough discussion of the alternative
coordination mechanisms is included in section 3.

The exchanged messages of type (a) and (b) are a few bytes long, so fluent
collaboration can be effected even under low bandwidth conditions, while those of
type (c) depend on the size of the typed text message.

As a result, this architecture can scale up to large-size groups of synchronous
collaborators, something not feasible in other point to point architectures.

In the following section 1.2 we discuss a specific case when the exchanged
information between the partners may be higher than that discussed in section 1.1,
when the need arises for exchange of primitive multimedia entities.

1.2 Exchange of multimedia entities

It should be noticed that there are many kinds of entities in ModellingSpace.
Abstract entities can be represented by textual descriptions, as in figure 1, while other
entities may be represented on the work surface through multimedia files, e.g. images
and video. Interconnection of such entities through quantitative and semi-quantitative
relations (Dimitracopoulou et al. 2003), can result in complex mathematical models.

In case that a complex entity is used by one of the collaborating partners and
cannot be found in peers' workstations during modelling, a need arises to transmit this
entity to collaborating peers in order to synchronize the peer applications. This may
result in relatively long download times. A solution for this problem is to send only
light control messages directly to the peers, including the structure of the new
primitive entities, while the multimedia files associated to these entities, to be send in
this case through a server to the requesting peers, without creating disruption to the
rest of the group. The details of the protocol used are discussed in section 2.

work area

links

entities

chat tool

Collaboration control panel

Fig. 2. The ModellingSpace environment

The typical work surface of ModellingSpace is shown in Figure 2. On the left-
hand side column of Fig. 2 a library of entities is shown, while on the right hand-side
a library of available relations (links) is included; these are the building blocks for
modelling. The items included in the main window of Fig.2 (a concept map of the
Internet in our example) are reproduced in all collaborating partners windows,
through the replicating architecture discussed in this section, which maintains the
content of the libraries in all partners sites.

The design of the MS environment has been a challenging process. In particular we
have been concerned with mechanisms for coordinating the activity and with
mechanisms for overcoming the problems imposed by firewalls and proxy servers,
which make establishment of point-to-point connections difficult. In the following we
describe the main characteristics of the architecture of the system that has overcome
these challenges.

2 Mechanisms for effective peer-to-peer interaction

The MS architecture is based on a thick client component, which contains a number
of interoperable tools. Synchronous collaboration is effected through peer-to-peer
interaction. However the proposed architecture contains also a server node (the
Community server), which is used as a common repository of information and as a
central means for registration and authentication of users participating in collaborative
interaction. Many issues related to security and asynchronous interaction can be
solved through this server, as proposed by many collaboration support systems
architectures, e.g. see (Constantini et al. 2001). Additional functionality of the server
involves support for asynchronous collaboration (asynchronous exchange of messages
and files through the tray mechanism, logging of asynchronous interaction), tracking
of physical address of online users, information on presence support, i.e. inform users
on availability of their peers for synchronous interaction and support for smaller
communities (the groups), where most of the activity takes place, by providing them
with private space in the repository and private asynchronous interaction support.
Finally, these Community Support Tools provide services like group management,
session management, registration and login of users, etc, see also Avouris et al.
(2003b).

The collaborative session is established as follows: The user activates request for
synchronous collaboration, selecting an individual user or a group of users from the
on-line users in the server, as shown in the interaction diagram of fig.3. The system
checks if a model is in the process of creation in the activity space, in such case the
system informs the users that the activity space should be cleared before collaboration
can be initiated. The system sends the request to the user(s).

The reply of the user(s) is either acceptance of the request or rejection of the
request, if no reply is provided within a time limit a “reject collaboration” is assigned
to the particular user. If the request is accepted by some of the users, the collaboration
panel is activated and a chat window is created, as shown in fig.2. If the collaboration
request is done in the frame of an existing group, then a collaboration session is
established (logging parameters, continuation of previously suspended collaboration
session). If the collaboration session is generated by a group coordinator, the
coordinator can decide on the collaboration protocol (round robin, key passing
mechanism, role playing protocol). Once a collaboration session is initiated, more
users can join in or leave the group at any time. This is acknowledged to the other
partners.

In the following, two alternative communication mechanisms that have been
implemented are described.

requestCollaboration()

Mediator
Community

Server

onlineGroupUsers()

: USER

Collaboration
Button

click()

BA

sendUserProfile()

messageWithUsers()

requestForCollaboration()

chooseUser()

: USER
Mediator

message()

accept()
informOfSession()

requestAccepted()
messageWithUsers()

Fig. 3. Initiation of Collaboration session between peers A and B

2.1 Direct peer-to-peer interaction

As discussed in section 2, the Community Server plays a role only during initiation
of collaboration. Peer workstations’ synchronization is achieved without intervention
of the server in this case. The mechanism is based on a set of reactive agents, which
try to achieve synchronization with the corresponding agents of the peer host based on
a stimulus–response model. So in a joint problem solving activity each object and
each relation introduced, act as reactive agents. The behavior of each agent depends
on whether it is on the active user’s side or on the passive user’s side at a specific
point in time. If it is on the active user’s side it monitors user events that are related to
the particular object (move, change of properties, delete, etc.), and sends these events
to the equivalent agent on the passive user’s side. This is achieved through the
Mediators, shown in figure 4. The size of these change-of-state messages is variable
and depends on the kind of actions of the active user. However in most cases it
remains very small, permitting good run-time performance. When the Mediator of the
passive user's side receives the message, it decodes it and informs the equivalent
agent who acts accordingly.

This necessitates that the objects present in the Activity Spaces of two
collaborating partners are identical. However, as discussed in section 1.2, there is a
possibility that two users are in possession of different primitive library objects, as a
result of the open architecture of the environment. So there can be a case when the
active user A adds an object into the shared activity space, which does not exist in the
library of user B. In this case it is necessary to update the library of user B at run time
with the missing object before proceeding any further. This is done transparently from
the users as follows: When user A inserts the new object O in the Activity Space,
Mediator A informs Mediator B about the addition of the new object, sending the
appropriate message with the object’s unique ID (shown as GUID in fig.4). Mediator
B searches the local Entity Library for O If this object does not exist on host B then
Mediator B asks A to send a copy of object O before proceeding any further.
Mediator A sends the object, and waits. During this activity the user actions in the
shared Activity Space are suspended and a message is displayed that the peer library
is updated. After the sending is complete Mediator B informs Mediator A that it has
received the object and the activity can proceed. The object multimedia attachments
can be send either directly as shown in figure 4 or through the server if the size of the
multimedia files are too large and can disrupt activity for both partners for too long.
In the latter case the message is send to the Community Server with the ID of the
object, the server sends the object to the user. If the object does not exist in the server,
it is downloaded, transparent to the two users from the library of user A.

i

i

i

insertObject
(GUID)

Mediator

ModelEntity

Mediator

objectRequired
(GUID)

: USER

ModelWindow

insertObject()

BA
ModelWindow

insertObject
(GUID) insertObject

(GUID) exist:=existsInLibrary
(GUID):boolean

[EXIST]
create
(GUID)[!EXIST]

objectRequired
(GUID)

objectMetaData
(GUID) updateLibrary

(GUID)
create(GUID)

objectIcons
(GUID) updateAllIcons

(GUID) updateAllIcons
(GUID)

Fig. 4. Synchronization of the peer workstations in direct peer-to-peer interaction.

2.2 Communication through proxy servers

An alternative communication scheme is described in this section, which has been
designed in order to overcome common problems in p2p protocols. These are the
restrictions imposed by intranet proxy servers who do not allow point-to-point
connections to not-trusted sites, while dynamic allocation of IP addresses creates
difficulties in establishing reliable connection across Intranet boarders. A solution
proposed to this problem has been the definition of a trusted Communication Relay
Server (CRS), residing in a host with public IP address. The role of this server is to
relay the exchanged control messages to collaborating partners. This component of
the MS architecture has been used effectively overcoming the above problems,
permitting control message tunneling, traffic coordination, improving client security,
since the communication is done only towards the trusted CRS node.

Client #1

Client #3

Client #2

Community Server

Communication
Relay Server

(CRS)

Client #1

Client #3

Client #2

(Intranet I#1) (Intranet I#2)

Fig. 5. Use of Communication Relay Server , Case A: collaboration across intranets

While the introduction of the CRS component solved these problems, in effect lead

to an implementation of the p2p protocol through a client-server mode which defeats
some of the advantages of the p2p approach, presented in section 2.1. For instance the
existence of a central CRS server creates a bottleneck in communication and does not
scale up. A more flexible approach to this problem, that has been lately used in MS,
has been to let the final user decide on the CRS to use for collaboration. In effect in
every installation of MS a copy of the CRS was included, so any host running MS
software can become a relay server. A default relay server resides in the Project
Community server (www.modellingspace.net), however if a user decides to start a
collaboration session using his/her own host as relay server, this can be done by
setting up the appropriate parameter in the MS environment. This is the case when the
collaborating partners are located in a local area network, so that it is more effective
to communicate using one of the local hosts as a relay server, as shown in case of
figure 6. Finally the possibility of overcoming completely the Community Server and
use just a local Communication Relay Server for synchronous collaboration is also
allowed by this flexible architecture. This is the case of a group of users in a local

http://www.modellingspace.net/

area network with no connection to the outside world, who wish to collaborate using
the p2p protocol. In the latter case, however some of the services of the Community
Server are missing, i.e., the history of group collaboration cannot be retrieved, while
presence info about group members is not available.

Client #1

Client #3

Client #2

Community Server

Communication
Relay Server

(CRS)

(Intranet)

Fig. 6. Use of Communication Relay Server, Case B: collaboration within intranet

3 Coordination of collaborative activity

The coordination of partners’ activity in the shared activity space is a very important
aspect of the architecture. In general, the coordination mechanism of the activity in
the shared workspace can take many forms, see Dix et al (1998) for a survey and a
discussion of alternative approaches. Some of these approaches impose no particular
control, i.e. any member has his/her own pointing device and can manipulate objects
in the activity space or write on the whiteboard. This is claimed that may result in
chaos with participants ending up in writing one on top of the other and cancelling
each other’s actions. Other approaches propose floor control mechanisms, involving
the existence of a coordinator, various floor control protocols, like round-robin etc, or
protocols of explicit request/ concession of the floor with time constraints. For
instance, inactivity of the floor owner for more than a certain time can release the
floor.

Two alternatives have been provided in relation to coordination mechanisms for
ModellingSpace design. The first mechanism involves a token, the Action Enabling
Key, which is owned by one of the participants at any given time. This key owner
imposes a lock on the shared activity space. The owner of this token can act in the
shared workspace, while the other participants just observe this activity. This
mechanism is supported by key request, key accept, key reject functions. These

coordination control messages are shown as connection (a) in fig.1. The effectiveness
of this approach has been studied in various experiments, see (Fidas et al. 2002) and
(Komis et al. 2002).

Shared Object
(User A)

"Move" by
mouse at (x1,y1)

Shared Object
(User B)

Mirror objects

Translate action

User A

Active mode

No locking

User B

Active mode

"Move" by
mouse at (x2,y2)

Translate action

(x0,y0)

(x1,y1)

(x0,y0)

(x2,y2)

(x1,y1)(x2,y2)

dt

Shared Object
(User A)

"Move" by
mouse at (x1,y1)

User A
User B

Shared Object
(User B)

Mirror objects

Translate action

Active mode
Observation mode

Model-level locking

(x0,y0)

(x1,y1)

(x1,y1)

(x0,y0)

Fig. 7. Locking of objects in the shared space.

An alternative that has been also implemented, proposed especially for small
groups of partners, involves lack of such floor control mechanism. The partners can
manipulate parts of the model at any time during problem solving. For reasons related
to distributed data consistency, only a temporary locking mechanism of objects
selected by one partner is imposed during an operation, as shown in fig.7. The
coordination of activities is left to the partners to decide in this case. So, the activity

of a partner cannot be inhibited and no conflicts can occur over key possession.
Nevertheless, in this case, implicit social protocols of organization need to be
established by the users themselves, as discussed in Avouris et al. (2003c), in order to
facilitate coordinated group activity, since explicit coordination is not imposed.

Early experiments with the explicit floor control mechanism have indicated that it
may improve reasoning about action, as partners need to reason and negotiate during
key requests. In the experiment reported in (Avouris et al. 2003c) the effect of this
mechanism on problem solving was studied, by comparing the performance of two
groups of users, one of which used this mechanism while the other used no explicit
floor control. A side-effect of the no-floor control case is observed when two users
attempt at the same time to handle the same object. In this case the final state of the
specific object dependents on the order of release of the lock on the object by the
partners involved, as shown in fig.7.

Dialogue
openers

Chat
window

Fig. 8. Chat window and collaboration panel

3.1 Direct communication

In the work surface, a text dialogue tool has been integrated, which is based on an
instant messaging protocol, using the same point-to-point connection and protocol of
the shared activity space. Through this, text messages are exchanged during
collaborative problem solving, as shown in fig. 8.

This chat tool, which is activated from the collaboration panel, is equipped with
dialogue openers, i.e. phrases like “I agree with…”, “I object to…”, “ I think that…”,
which can be used to open a chat message, as shown in fig.8. This way the user can
select the opening phrase of the message and thus classify indirectly the speech act.
There is a lot of controversy associated with structured dialogue mechanisms. Some
researchers believe that they interfere with interaction and should be avoided, while

others believe that they support development of meta-cognitive skills and in addition
they facilitate analysis of communication and collaboration (Soller, 2001).

Other means for exchange of text messages are the sticky notes (text containers
positioned in the work space). These are treated, in terms of the architecture, as
special kind of entities, with internal properties: owner, time of creation, text_content.
Through the sticky notes, gestures can be simulated, since a sticky note inserted in the
work surface, can be related to an object in this space and through this a comment by
one of the partners can have a permanent effect.

4 Conclusions

In this paper we discussed a peer-to-peer architecture that permits real-time
collaborative modelling at a distance. The approach involves exchange of just control
messages for maintenance of effective WYSIWIS (what you see is what I see) of the
shared workspace, as well as text chat messages for direct communication and
coordination control messages. These messages are at the most a few bytes long and
therefore can be exchanged without disruption of interaction even under low
bandwidth peer-to-peer connections. The effectiveness of this approach has been
proven through a number of case studies in authentic collaborative problem solving
settings, reported in Avouris et al. (2003c), Komis et al. (2003), Margaritis et al.
(2003), in which alternative cooperation schemes have been implemented.

Two communication schemes have been implemented, one involving direct peer-
to-peer communication and a second one through a relay server (CRS). The
architecture can accommodate multi-partner collaboration due to the low-bandwidth
requirements for both the p2p and CRS versions.

The proposed architecture is characterized by a great degree of flexibility, as it
permits use of various coordination schemes and levels of locking of objects in the
shared activity space, while the proposed communication relay server can overcome
security problems and restrictions imposed in modern intranets.

The solutions discussed in this paper have applicability to a wide range of p2p
applications, which can be used for effective collaboration and sharing of resources in
communities of various sizes and characters.

5 Acknowledgement

The reported work has been partly funded by the ModelsCreator project in the frame
of the Pinelopi Program of the Greek Ministry of Education and the IST-School of
Tomorrow Project IST-2000-25385 “ModellingSpace” of the European Commission.

6 References

1. Avouris N.M., Dimitracopoulou A., Komis V., (2003a), On analysis of collaborative
problem solving: An object-oriented approach, J. of Human Behavior, Vol. 19, 2, pp. 147-
167.

2. Avouris N., Margaritis M., Komis V., Saez A., Melendez R., (2003b) ModellingSpace:
Interaction Design and Architecture of a collaborative modelling environment, Proc. of 6th
Conf. Computer Based Learning in Science (CBLIS), pp. 993-1004, 2003, Nicosia,
Cyprus.

3. Avouris N., Margaritis M., Komis V., (2003c), Real-Time Collaborative Problem Solving:
a Study on Alternative Coordination Mechanisms, IEEE ICALT 2003, pp.86-90, Athens July
2003.

4. Constantini F., Toinard C., (2001), Collaborative Learning with the Distributed Building
Site Metaphore, IEEE Multimedia, July-Sept. 2001, pp. 21-29.

5. Dimitracopoulou A., Komis V., (2003), Design principles for an open and wide
Modellingspace of Modelling, Collaboration and Learning, Proc. of 6th Conf. Computer
Based Learning in Science (CBLIS), pp. 1005-1016, 2003, Nicosia, Cyprus.

6. Dix A., Finlay J., Abowd G, Beale R., (1998), Human-Computer Interaction, 2nd Edition,
Prentice Hall

7. Fidas C., Komis V., Avouris N.M. (2001). Design of collaboration-support tools for group
problem solving, Proceedings PC HCI 2001, pp. 263-268, Typorama Pub., December 2001,
Patras, Greece.

8. Komis V., Avouris N., Fidas C., (2002), Computer-supported collaborative concept
mapping: Study of synchronous peer interaction, Education and Information Technologies
vol.7, 2, pp.169-188.

9. Komis V., Avouris N., Fidas C., A study on heterogeneity during real-time collaborative
problem solving, in B. Wasson, S. Ludvigsen, U. Hoppe (eds.), Designing for Change in
Networked Learning Environments, Proc. CSCL 2003, pp. 411-420, Kluwer Academic
Publ., Dordrecht, 2003.

10. Lethin R., (2003), Technical and Social Components of Peer to Peer Computing,
Communications of ACM, Special issue on P2P Computing, vol 46, 2, pp. 30-32, February
2003.

11. Lopez P., A. Skarmeta, (2003) ANTS Framework for cooperative work environments,
IEEE Computer, vol. 36,3, pp. 56-62, March 2003.

12. Margaritis M., Avouris N., Komis V., Dimitracopoulou A., (2003), Real-time collaborative
modelling over low-bandwidth networks, Proc. of CSCL2003 Community events, pp. 138-
140, June 14-18, Bergen, 2003.

13. Soller, A.L. (2001) Supporting Social Interaction in an Intelligent Collaborative Learning
System. Int. Journal of Artificial Intelligence in Education, 12(1), 40-62.

14. Suthers, D.D., (2001), Architectures for Computer Supported Collaborative Learning, Proc.
IEEE int. Conf. on Advanced Learning Technologies, ICALT 2001, Madison, Wisconsin.

