

MODELLINGSPACE: INTERACTION DESIGN
AND ARCHITECTURE OF A COLLABORATIVE

MODELLING ENVIRONMENT

Nikolaos Avouris, Meletis Margaritis, Vassilis Komis, Angel Sáez and Ruth Meléndez

ABSTRACT
This paper describes the architecture of the ModelllingSpace open problem-solving environment. Modelling-
Space is a new learning environment supporting synchronous and asynchronous collaborative problem solving
by students at a distance. We describe here the key design decisions of the ModellingSpace software and in
particular issues related with support for students with heterogeneous sets of primitive entities, control of
interaction and dialogue, representation of the entities and models in a format that permits exchange of primitive
material, as well as architectural considerations of the distributed application relating to network bandwidth
limitations. The paper provides also an outline of server-side tools designed for supporting a community of
students, users of the ModellingSpace environment.

KEYWORDS
Collaborative learning, computer-supported collaborative problem solving, synchronous collaborative software,
groupware

INTRODUCTION

ModellingSpace is an open learning environment that supports real-time and asynchronous
collaboration of small groups of students engaged in problem solving. This environment has
been designed and built, based on experience with existing previous tools, like ModelsCreator
2.0 (Komis et al. 2001), which have been used in the past for teaching multi-disciplinary
science subjects in various educational settings, see Komis et al. (2002), Fidas et al. (2002b),
Margaritis et al. (2003). The architecture of the ModellingSpace distributed environment is
presented in this paper. In particular we discuss issues related to interaction design, support
for students with heterogeneous sets of primitive entities, control of interaction and
coordination mechanisms built, as well as architectural considerations of the distributed
computing limitations. The paper provides also an outline of the server-side tools designed for
supporting a community of students, users of the ModellingSpace environment. A number of
evaluation studies of the early prototypes have taken place recently in which pupils and
teachers of Greek High Schools and undergraduate University students have participated,
while more experimental use of software prototypes is in progress; see Margaritis et al.
(2003). The main concept of ModellingSpace development has been based on experience with
existing previous tools, developed during recent years and tested in the field. The
functionality of these original tools has been enhanced and re-implemented. In addition, new

tools have been developed and integrated in the new ModellingSpace environment, related to
analysis of collaboration and problem solving, discussed in Avouris et al, 2003b.

MODELLINGSPACE DESIGN

This section presents the main aspects of the architecture of the ModellingSpace (MS) system
together with the main technological decisions of the system that has been developed.
MS is a software environment that supports individual and collaborative building of various
kinds of models. It includes tools that permit building and editing of primitive entities,
building and exploring models that are made of primitive entities, synchronous and
asynchronous interaction of students, collocated or at a distance, who collaborate in building
models out of primitive entities and tools that support analysis of modelling activities. The
open character of MS means that students have access to an open set of primitive entities that
can be used for building these models.

Key design decisions
The main decisions concerning the architecture are related to the development of the
synchronous and asynchronous collaboration functionality, as well as the integration of the
meta-cognitive analysis tools in the architecture. The decisions related to the architecture of
the stand-alone modelling tools (Models editor and Entities editor) are based in some extend
on existing ModelsCreator functionality and design.
Synchronous and asynchronous collaboration for modelling is a case of computer supported
collaboration based on the concept of shared artefact represented in a work surface (Dix et al,
1998). In contrary to other collaboration applications in which emphasis is in communication
(meeting support, argumentation tools, decision making etc.) in this case the distant partners
collaborate mainly by sharing the model in the asynchronous collaboration mode and act on a
shared work surface in the case of the synchronous collaboration mode. Our case is similar to
collaboration support environments involving development of artefacts, like shared text
editors, collaborative design environments etc, in which the partners share the view over the
artefact to be developed, which thus becomes a cognitive space. A key requirement is
therefore to create infrastructure for sharing a view of the model in synchronous modelling
activities and additionally support direct communication among the participants. In figure 1
the notion of feed-through the artefact is shown, where one participant's manipulation of
shared objects can be observed by the other participants. This communication through the
artefact can be as important as direct communication between participants, as observed in
(Avouris et al. 2003a and Fidas et al. 2002). Finally the size of the group of collaborating
partners and the setting of collaboration in terms of technical specifications of equipment to
be used (e.g. network bandwidth) and location of participants are essential characteristics of
the problem to determine the architecture.

Direct Communication
Various architectural decisions are related to this framework. Considering that the
collaborative activity is done mainly between partners at a distance the direct communication
mechanism has to be defined. The alternative options have been (Preece et al, 2002):
· Voice communication (video phones, video conferencing, media spaces)
· Text-based communication (instant messaging, collaborative virtual environments (CVEs),
chat rooms)

Understanding

model

participant participant

Control and
feedbackfeedthrough

Direct
Communication (chat messages)

Deixis

Figure 1 Collaborative-modelling framework

From these two alternatives the second one has been selected for a number of reasons. Video
does not seem to bring any benefit in this context, taking in consideration the current serious
limitations of videoconferencing systems (Preece et al. 2002). Additional problems with audio
are: logging of voice and transferring it in text form, necessary for meta-analysis and
classification of events, is a technically difficult task, there is lack of adequate bandwidth for
voice and video communication in most school environments. Also voice or video necessitate
use of special equipment, often not available in school lab workstations. In addition, difficulty
with distinguishing the identity of the speaker from a group through his/her voice has been
reported in various studies.
On the other hand, use of typed messages through instant messaging technology seems to
have certain advantages. Transmission of text messages can be done through low bandwidth
connections. Students of typical age group of ModellingSpace users (10-16) seem to have
developed strong typing skills and instant messaging use habits, since they are frequent users
of this technology through various media (SMSs, chatrooms etc.). Finally, the implementation
of structured dialogue techniques, through use of dialogue opening options in a chat tool is
easy in this case. In addition, if voice communication needs to be used, this can be done using
tools external to the MS environment (e.g. voice over IP or telephone connection), especially
since such services are made gradually available to schools.

Shared activity space design
One important decision is related to the design of the shared activity space. According to
Suthers (2001) the degree of coupling between the activities of different users and the state of
applications used by those users can vary. The alternatives according to Suthers are:

· Strict WYSIWIS (what you see is what I see). of the activity in the workspace of
coordination, provides all users with exactly the same view and controller states. Strict
WYSIWIS can support effectively the collaboration of two to three users whose activities
are tightly coupled. An example of such environment is NetMeeting.

· Relaxed WYSIWIS does not insist that the state of the view be exactly the same, so
different users can scroll to different viewpoints and perform their own operations, such as
moving objects, until a model change forces an update in the view
· Model level coupling, guarantees that the partners share the same model but the view
might be entirely different, for example one can view the model as a graph, or run a
simulation of the model independently of the others.

From the requirements of ModellingSpace a mixture of alternatives is provided. A strict
WYSIWIS is allowed in the main model-editing window. We believe that activity in this area
should be faithfully reproduced in all participants' workstations. This is because most of
communication and reasoning is based on this shared viewpoint, which becomes the main
grounding mechanism of dialogue and through which eventually common understanding can
occur. Deviation from this results in confusion of partners since misunderstandings can be
generated due to different views when partners are allowed to scroll to different viewpoints,
while no strong coupling of the shared view and the direct communication can be achieved.
However all additional operations outside this shared workspace, e.g. relating to browsing of
themes of study, saving of the model and running graph tools with alternative representations
of the built model, are performed independently by partners involved (a model level coupling
approach according to Suthers(2001).
A consequence of this design decision can be that high volume of information may be
transmitted to participating peers due to the strict WYSIWIS of the shared workspace
requirement. A possible solution to this problem is to use replication of the environment in all
workstations and synchronization of the workstations states through control messages. This
approach has also been suggested by MatchMaker (Tewissen, 2000), Belvedere (Suthers, et
al. 1997) Habanero (Chabert et al., 1998), E-slate (Koutlis et al, 1998) etc.
Even this solution however is not satisfactory for an open environment, like ModellingSpace.
In our case the models building blocks, i.e. primitive entities (containing often large
collections of image files) can differ in peers’ workstations. This is due to changes that can
occur even during modelling activity, as new primitive entities may be imported from the
common repository or received through asynchronous interaction. So in case that a primitive
entity is used by one of the partners during modelling, a need arises to transmit possibly large
multimedia files to collaborating peers in order to synchronize the peer applications. This can
create disruption in smooth collaboration to all collaborating partners, see Fidas et al. (2002b).
A solution proposed for this problem is to send only light control messages to the peers (chat
and change of state), including the structure of new primitive entities, while the heavy
multimedia files associated to these entities, if required, are sent through the server directly to
the requesting peers, without creating disruption to the rest of the group. This hybrid protocol
is discussed in more detail in the next section.

Coordination mechanism design
One other important decision is related to the design of a coordination mechanism for the
activity in the shared workspace. In computer-supported collaborative environments, like in
face-to-face group interaction, a mechanism is needed to control the floor in terms of
communication and action in the common activity space. Various alternative coordination
mechanisms have been proposed; see Dix et al (1998) for a survey and a discussion for
alternative approaches. Some of them impose no particular control, i.e. any member has
his/her own pointing device and can manipulate objects in the activity space or write on the
whiteboard. This can create coordination problems with the participants ending up in writing
one on top of the other and cancelling each other’s actions. Other architectures propose floor

control mechanisms, involving the existence of a coordinator, various floor control protocols,
like round-robin etc, or protocols of explicit request and concession of the floor. For instance
inactivity of the floor owner for more than a certain time can release the floor.
In the case of ModellingSpace we propose a coordination mechanism which involves the
notion of the Action Enabling Key, owned by one of the participants at any given time. This
key owner can then act in the shared workspace, while the rest just observe this activity. This
mechanism is supported by key request, key accept, key reject functions. Experiments with
this floor control mechanism, see (Fidas et al. 2000) and (Komis et al. 2002), demonstrate that
it improves reasoning about action, as partners need to reason and negotiate during key
requests.
This coordination mechanism in absence of a coordinator is based on a pass-the-key protocol,
or in presence of a coordinator can take the form of any protocol imposed by the coordinator
who exercises authority through this mechanism. This flexibility is suitable for educational
environments like ModellingSpace, where in various settings, educators or researchers wish to
use different coordination procedures.

ModelEdit

Synchronous
collaborative

modelling

Entity editing

Community support
service

unstructured data

Student

Teacher/
researcher

Builds/ edits
entities

Common
Repositories
(structured)

Registers
logs in

Imports exports
models/ entities/ libraries

Student
client node

Server
node

analysis &
supervising
tools

Off-line
analysis

Teacher client
node

Asynchronous
collaboration

Entities –
models
library administrator

Other
students

Supervises and
coordinates

Builds/
edits

models

Users/
Schools/
Groups

Management

Entity editing
Entities –
models
library

Repositories
Management

Figure 2. Overview of the architecture: actors and nodes

OVERVIEW OF MS SYSTEM ARCHITECTURE

Based on the described above design rational, the ModellingSpace (MS) software is defined.
This takes the form of a suite of interconnected tools to support collaborative modelling
learning activities. The main actors of MS, according to this are the student and the teacher
(called learning actors). The latter incorporates many roles: The coordinator/ facilitator of
collaborative modelling, who can remotely or locally co-ordinate, coach and supervise
modelling activities through the relevant supervision tools. The analyst/researcher who uses
the analysis tools in order to study and identify patterns of modelling learning during
modelling activities (in on line or off line mode). The creator of primitive modelling entities

who uses the editor for building new modelling entities. This last role can be played by
advanced students according to the specifications of pedagogical scenarios of use. Additional
actor is the administrator of the community and of the common repository.
There are five main components in the MS distributed environment, which reside in three
types of nodes, the student node, the teacher node and the server node, as shown in figure 2.
The main components are: The Model Editor, the Entity Editor, the Analysis & supervision
environment (see Avouris et al. 2003b), the Common Repository and the Community support
environment.
These are briefly presented in the following. There are going to be two different installations
of the MS software, the client that can be used either by teachers (teacher client node in figure
2) or students (student client node) with different capabilities and the server that is
administered by the administrator and used remotely also by the other actors through their
client components. Since the most typical use of MS is in a school laboratory, and in this case
the same workstation could be used by many students of different classes, the client supports
multi-user access, identification and authentication of the user and user private space. The MS
environment is presented in the following as client and server side tools.

CLIENT SIDE TOOLS

Model Editor
The main tool is the ModelEditor (ME), which is accessible by both the teacher and the
student. This is a direct manipulation space, which is expected to be used mostly by students
for building models out of primitive modelling entities. ME supports building of different
kinds of models mostly for students of 11-16 years. The ME needs to support building of
dynamic models, i.e. models that simulate a behaviour to the user. These can be either semi-
quantitative models, i.e. models in which the entities are related by semi-quantitative relations
or quantitative models, where the relations can be mathematical expressions. Also static
qualitative models (concept maps), can be built using this environment. Emphasis has been
given so far on semi-quantitative modelling and reasoning, as this has been the main
innovation of the ModelsCreator environment, (see Komis et al. 2001).
The ME puts great emphasis on visualisation of the modelling entities, their properties and
their relations, supporting the reasoning development of young students (NCTM 2000). This
feature is extended also to the simulation of executable models allowing their validation
through representation of the phenomenon itself in a visual way.
The activity space of the ME modelling environment needs to be shared by multiple actors,
permitting collaborative modelling activities of learning actors at a distance. The size of the
groups engaged in synchronous collaboration is expected to be small, so point-to-point
connection is feasible. The messages exchanged are of small size, as due to replication the
only information exchanged relates to control of modelling activities (e.g. add entity Ex to the
(x,y)), while the entity Ex itself is not usually transferred between the distant nodes, as
discussed in more detail below. Alternative views of a model are supported. A model can be
seen as a network of entities and relations, which is the normal view as build in the activity
space, or as a table of values, a graph or a bar chart, presenting specific relations and
properties of the model in new windows.
The ME is designed to be a user-sensitive environment, providing different functionality to
different actors. So the teachers can use the tool for supervising simultaneously many groups
of students, and share many collaboration windows, while special permissions are allocated to

them in relation to coordination of collaboration, access to libraries of entities and
management of student accounts, as discussed in more detail in the following.

Model
manipulation
buttons

Model run
buttons

Libraries of
entities

Relations

Model creation
and testing area

Collaboration toolsThemes of study
management

Graph, bar chart
and table of
values tools

Figure 3. The model editor (ME) environment

Entities Editor
A second tool of the client node is the Entities editor (EE). This tool is used typically by the
teacher or advanced student in order to create primitive entities, which can be stored in the
local Entities Libraries or send to the server Common Repository. The entities are the building
blocks of the models. Each entity is defined as an object, representing an object or a concept
of the real world that has a name, a text description and a graphical representation. A number
of properties can be associated to an entity through this tool. For instance the Entity Plant can
have the properties Growth, Energy, Food_intake in the context of a photosynthesis model.
There are entities that can have more abstract meaning (variables) which have no properties
associated. The properties in general have a range of values that they can take; while for each
property the min, max and default value is defined. The entity is associated to a number of
states. Each state corresponds to a distinct range of values of the entity’s properties. An iconic
representation of the entity is associate to each one of these states, see figure 4.

Various image formats can be used as entity representations. A generated entity by the tool is
represented by a data structure defining the entity properties, states, etc. and a number of
associated image files. An XML representation of the entity can be produced, along with
binary compressed representations for storing locally. The user can define as many entity
properties and states as he/she wishes, however special attention should be paid on the size of
the final entity, which in case of complex entities can be quite large, depending on the image
format and number of distinct associated images.
MS is an open environment. The importance of this open character on collaborative modelling
and the implications on the architecture should be briefly discussed. In a typical closed
collaborative problem-solving environment, the students have at their disposal a common set
of basic constitutive abstract primary entities, out of which they construct their

representations. These primitives can be rectangles, ellipses, squares, different statement
types, etc., as it is the case in Belvedere (Suthers and Jones 1997), COLER (Constantino and
Suthers, 2001), C-CHENE (Baker and Lund, 1997), Modeller Tool (Koch et all 2001), etc. So
common understanding is based on the existence of these common basic primitives. On the
contrary, in an open system like MS, one user before entering in a specific collaborative
session may possess a different set of primitive elements to this of her peer. As a result
diverse sets of primitive objects can be found in the client local libraries and the server
repositories. These objects are represented through XML a structured data interchange
protocol approach, which permits association of semantic meaning and syntactic validation,.In
this a GUID is used representing the unique identity of an entity, which is generated by an
algorithm as a combination of creation time, unique workstation and user identity at entity
creation time.

Light=2

Sun.light 0 1 2 3 4 5

sun

Light=2

Sun.light 0 1 2 3 4 5

sun

entity states

images

property states

Figure 4. An example of an entity definition, the property light of the entity sun is associated to 6 states and
corresponding iconic representations. On the right the state image assignment tool is shown. Two properties

have been defined, their states and images have been associated to the produced entity states.

Communication protocol
Synchronization of collaborating partners is achieved using a peer-to-peer protocol, without
intervention of a server. The mechanism is based on a set of reactive agents, which try to
achieve synchronization with the corresponding agents of the peer host based on a stimulus–
response model. So in a joint problem solving activity each object and each relation
introduced, act as reactive agents. The behaviour of each agent depends on whether it is on
the active user’s side or on the passive user’s side. If it is on the active user’s side it monitors
user events that are related to the particular object (movement, changing of properties,
deleting etc.), and sends these events to the equivalent agent on the passive user’s side. This is
achieved through the Mediators, shown in figure 5. When the Mediator of the passive user's
side receives the message, it decodes it and informs the equivalent agent who acts
accordingly.
This necessitates that the objects present in the Activity Spaces of two collaborating partners
are identical. However, as discussed earlier, there is a possibility that two users are in
possession of different primitive library objects, due to the open architecture of the
environment. So there can be a case when the active user A adds an object into the shared
activity space, which does not exist in the library of user B. In this case it is necessary to
update the library of user B at run time with the missing object before proceeding any further.
This is done transparently from the users as follows: When user A inserts the new object Oi in

the Activity Space, Mediator A informs Mediator B about the addition of the new object,
sending the appropriate message with the object’s GUID. Mediator B searches the local Entity
Library for Oi If this object does not exist on host B then Mediator B asks A to send a copy of
object Oi before proceeding any further. Mediator A sends the object, and waits. During this
activity the user actions in the shared Activity Space are suspended and a message is
displayed that the peer library is updated. After the sending is complete Mediator B informs
Mediator A that it has received the object and the activity can proceed. The object icons can
be sent either directly as shown in figure 5 or through the server if the size of the multimedia
files are too large and can disrupt activity for both partners for too long. In the latter case the
message is sent to the server with the GUID of the object, and the partners download the
object from the corresponding repository in the server (as it is described in the following
section the common repository is organised in many different ones, and not all users have
access to all repositories). A process has been designed to look for the entity in the
repositories to which the user has access. In case that the material is not found in the public
repository, but in a restricted one to which the first user has access but not the rest, a copy of
the entity is made in the user’s exchange tray and it is from there, where the other users are
allowed to pick it up). If the object does not exist in the server, it is uploaded, transparent to
the two users from the library of user A.

Figure 5. The communication protocol interaction diagram

SERVER SIDE TOOLS

As discussed in the previous sections, the MS architecture is based on a thick client
component, which contains a number of interoperable tools. Even synchronous collaboration
is effected through peer-to-peer interaction. However the proposed architecture contains also
a server node which offers the following services: (a) management of the repositories; (b)
management of users and schools; (c) management of collaboration groups; and (d) support of
peer-to-peer collaboration. Many issues related to security and asynchronous interaction can
be solved through this server, as proposed by many collaboration support systems, e.g. see
(Heibinger, 2001 and Constantini et al. 2001).

(a) Management of the repositories. The management of the repositories is deeply linked with
the management of the users and the management of groups. The different kinds of
repositories that exist in the server are the following: the public repository; the personal
repositories; the exchange trays; and the group repositories.
The Public Repository is the main repository of the ModellingSpace server. Material stored
there is available for all users, but only teachers have permission to upload entities, models,
themes of study, since only correct models, and useful material should be stored in this
repository. Therefore when a student wants to upload material to this repository, the material
needs to be validated by a teacher.
Each user has a Personal Repository, which no other users can access, and an Exchange Tray,
accessible also to other users, which is used as a secure way to exchange documents. These
two kinds of repositories are automatically created in the server when the administrator enrols
a new user, and they disappear when the user is deleted from the system.
To the groups repositories only members of the group have access.
Thus with the term common repository, we mean a set of repositories that exist in the server.
 (b) Management of users and schools: Only the administrator can add new schools or new
users to the server, and when a new user is added, two new repositories are automatically
created: a personal repository and an exchange tray.
 (c) Management of collaboration groups: If the concept of a group is understood as a set of
users who are collaborating in the construction of a new model, two kind of groups can be
distinguished: when users are collaborating on-line and off-line. Collaboration means the
shearing of knowledge, work and material, so groups need special repositories to which only
their members can access. Therefore at the same time that a group is created a group
repository is also created, and the management of these two kind of groups is not done in the
same way. Permanent groups need to be created by an administrator indicating wether the
group is moderated or not; restricted or not (that is if there is a maximum number of members
allowed); etc., whereas collaboration groups are automatically created when two users start
on-line collaboration.
In both cases the life of the group repository depends on the life of the group: it appears when
the group is created and once the group is deleted (in the case of the permanent ones) or the
on-line collaboration ends (in the case of the collaboration groups), the group repository is
also deleted from the server.

Figure 6. The user registration and the search learning material server interfaces

(d) Support of peer to peer collaboration. The role of the server in the peer to peer
collaboration has already been described in the Communication Protocol section. Additional
functionality of the server involves tracking of physical address of users, who might not have
a permanent IP address, and information on presence support, i.e. inform users on availability
of their peers for synchronous interaction. Finally, these Community Support Tools provide
also other services like session management, login of users, etc.
An interface to the server repository has been built through which one can download material
in the Common Repository (CR) or any of the other private repositories to which the user has
access to, as shown in figure 6.

CONCLUSIONS

The main functionalities of the presented here ModellingSpace, architecture are:
(a) MS is an environment in which models of various kinds can be built and explored, made
out of primitive entities, making it an environment particularly suitable for science education.
(b) The users, students or teachers, are able to create, store in and retrieve from local or
common repositories primitive entities and models
(c) Services are provided for supporting creation and maintenance of the activities of virtual
communities of students of different schools who use ModellingSpace through the server.
(d) The teachers who use MS are able to supervise single students or groups of students
engaged in modelling activities in the same place (school lab) or from a distance
(e) Asynchronous collaboration of students engaged in modelling activities are supported
through community tools
(f) Synchronous collaboration of small groups of students, engaged in modelling activities,
are also supported, through a shared activity space and a text communication tool.
The above functionalities are now tested through a number of field studies, e.g. Margaritis et
al. (2003), Avouris et al. (2003b), through which the effectiveness of the presented
architecture is evaluated.

ACKNOWLEDGEMENT
The reported work has been performed in the frame of the IST-School of Tomorrow Project
IST-2000-25385 “ModellingSpace”. In this project participate the University of the Aegean,
(GR), the University of Patras (GR), the University of Mons-Hainaut (B), the New University
of Lisbon (PT), the University of Angers (F) and SchlumbergerSema (SP).

REFERENCES
1. Avouris N.M., Dimitracopoulou A., Komis V., (2003a), On analysis of collaborative

problem solving: An object-oriented approach, J. of Human Behavior (forthcoming)
2. N. Avouris, V. Komis, G. Fiotakis, M. Margaritis, N. Tselios (2003b), Tools for

Interaction and Collaboration Analysis of learning activities, CBLIS 2003.
3. Baker M.J., de Vries E., Lund K. & Quignard M (2001) Computer Epistemic Interactions

for co-constructing scientific notions: Lessons Learned from a five-years research
program, Proc. 1st EuroCSCL 2001, pp.89-96.

4. Baker, M.J. & Lund K. (1997) Promoting reflective interactions in a computer –
supported collaborative learning environment. Journal in Computer Assisted Learning,
13, 175-193.

5. Chabert A., Grossman E., Jackson L., Pietrowicz S. Seguin C., (1998), Java Object-
Sharing in Habanero, Com. ACM, 41 (6), pp. 69-76

6. Constantini F., Toinard C., (2001), Collaborative Learning with the Distributed Building
Site Metaphore, IEEE Multimedia, July-Sept. 2001, pp. 21-29.

7. Constantino-Conzalez & Suthers D. (2001), Coaching Collaboration by Comparing
Solutions and Tracking Participation. 1st EuroCSCL 2001, pp.173-180.

8. Dix A., Finlay J., Abowd G, Beale R., (1998), Human-Computer Interaction, 2nd
Edition, Prentice Hall

9. Fidas C., Komis V., Avouris N.M. (2001). Design of collaboration-support tools for
group problem solving, Proceedings PC HCI 2001, pp. 263-268, Typorama Pub.,
December 2001, Patras, Greece.

10. Fidas C., Komis V., Avouris N.M., Dimitracopoulou A., (2002a), Collaborative Problem
solving using an Open Modelling Environment, Proc. CSCL 2002, pp. 654-656,
Erlbaum Assooc, Hillsdale NJ, 2002.

11. Fidas C., Komis V., Tzanavaris S., Avouris N., (2002b), Heterogeneity of learning
material in synchronous computer-supported collaborative modelling, Computers and
Education (submitted)

12. Koch J.H., Schlichter J. & Trondle P (2001). Munics: Modeling the flow of Information
in Organisation. 1st EuroCSCL 2001, pp.348-355.

13. Komis V., Avouris N., Fidas C., Computer-supported collaborative concept mapping:
Study of synchronous peer interaction, Education and Information Technologies vol.7,
2, pp.169-188, 2002

14. Komis V., Dimitracopoulou A., Politis P., Avouris N. (2001). Expérimentations
exploratoires sur l’utilisation d’un environnement informatique de modélisation par
petits groupes d’élèves, Sciences et Techniques Educatives, Vol. 8, no 1-2, pp.75-86.

15. Koutlis E. (1998) E slate specification, see www.eslate.cti.gr
16. Margaritis M., Avouris N., Komis V., The architecture and evaluation of a collaborative

learning environment, CBLIS 2003, Nicosia 2003.
17. National Council of Teachers of Mathematics. (2000). Principles and standards for school

Mathematics. Reston,VA: NCTM.
18. Preece J, Rogers Y, Sharp H., (2002), Interaction Design beyond human-computer

interaction, Willey and Sons.
19. Suthers D. & Jones D. (1997), An Architecture for Intelligent Collaborative Educational

Systems. In B. du Boulay, R. Mizoguchi (Eds) 8th World Conference on Artificial
Intelligence in Education (AIED’97), pp. 55-62.

20. Suthers, D.D., (2001), Architectures for Computer Supported Collaborative Learning,
Proc. IEEE int. Conf. On Advanced Learning Technologies, ICALT 2001, Madison,
Wisconsin

21. Tewissen, F., Baloian N., Hopper U., Reimberg E. (2000), Match Maker synchronizing
objects in Replicated Software Architectures, Proc., 6th CRIWG, Madeira.

N. Avouris, M. Margaritis, V. Komis, University of Patras, Patras, Greece
{N.Avouris, Margaritis} @ ee.upatras.gr, komis@upatras.gr
R. Melendez , A. Saez, SchlumbergerSema, Madrid, Spain
{Ruth.Melendez, Angel.Saez } @madrid.sema.slb.com

