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Introduction 

 The term ‘conceptual change’ was introduced by Thomas Kuhn (1962) to indicate that the 

concepts embedded in a scientific theory change their meaning when the theory (paradigm) changes1.  

Kuhn promoted a contextual view of concepts as having an internal structure embedded in theoretical 

frameworks from which they obtain their meaning. When a theoretical framework changes, the 

meanings of the concepts subsumed in it also changes, making them ‘incommensurable’ to the same 

concepts subsumed under the previous theoretical framework2.  The notion of incommensurability 

received considerable criticism from philosophers and historians of science, forcing Kuhn to eventually 

change his position from that of ‘global incommensurability’ to ‘local incommensurability’. Local 

incommensurability refers to only a partial change in the meaning of concepts.  

 Susan Carey (see, Carey, 1985, 1991, and Carey & Spelke, 1994) was instrumental in 

clarifying how conceptual change can be seen in the context of cognitive development.  Carey (1991) 

supported the notion of ‘local incommensurability’ attempting to divorce conceptual change from 

issues of reference (Kitcher, 1983) 3.  She identified several kinds of conceptual changes that could be 

considered as radical conceptual change and provided the empirical evidence to support the claim that 

they occur in the course of spontaneous cognitive development. Conceptual change according Carey 

(1991) requires the re-assignment of a concept to a different ontological category or the creation of new 

ontological categories – as when the concept of the ‘earth’ becomes subsumed under the category of 

astronomical objects as opposed to physical objects (Vosniadou & Skopeliti, 2005)—it can also 

involve the differentiation or coalescence of concepts – such  as the differentiation between heat and 

temperature or weight and density (Carey, 1991; Carey & Spelke, 1994; Wiser & Carey, 1983;Wiser & 

Smith, this volume).  

 Other researchers have argued that there are many different kinds of conceptual changes that 

happen in the process of learning and development as well as in the history of science (Thagard, 1992; 

this volume). Thagard (this volume) provides such a list of conceptual changes, starting with some of 

the simpler kinds, i.e., those that involve adding a new instance or a new rule to an existing concept, 

                                                
1 For criticisms of Kunh’s views in the philosophy and history of science, see Arabatzis and Kindi (this volume) and Machamer 
(2007). A more detailed description of our views on conceptual change and incommensurability will be provided later in this 
chapter.  
2 Similar views were simultaneously and independently expressed by the philosopher Paul Feyerabend (1962).  
3 Global incommensurability can easily lead to an anti-realist position. If concepts change then it is not clear how they can 
continue to refer to the same entities or processes.  Adopting a realist stance requires an account of concepts that keeps reference 
constant as the meaning of the concepts changes (see also Putnam, 1992).  



and ending with some of the more radical. The latter are the ones requiring changes in the ontological 

category tree in which a concept belongs, with corresponding changes in causality – as, for example, 

when concepts like ‘life’, ‘disease’ and ‘mind’ change from being embedded within theological 

explanations to qualitative and then to mechanistic frameworks. Chi (this volume) also distinguishes 

between three kinds of conceptual changes that happen in the process of learning: belief revision, 

mental model transformation, and categorical shift. Similar distinctions are also made by Keil and 

Newman (this volume), Wiser and Smith (this volume), Inagaki and Hatano (2003; this volume), to 

characterize the process of cognitive development.  

 The focus of the present chapter is to describe and explain the kinds of conceptual changes 

that take place when students are exposed to counter-intuitive concepts in science and mathematics 

(Vosniadou, 2006; Vosniadou & Verschaffel, 2004). We are interested in what Inagaki and Hatano 

(this volume) call ‘instruction induced conceptual change’, as compared to the kinds of conceptual 

changes that happen spontaneously in development.  We argue that many science concepts are difficult 

to learn because they are embedded within scientific theories that violate fundamental principles of the 

naïve, framework theory of physics within which everyday physics concepts are subsumed. In other 

words, the learning of many science concepts requires the more radical kind of conceptual changes that 

involve ontological category shifts.   

 At the heart of our theoretical approach is the idea that initial explanations of the physical 

world in naive physics are not fragmented observations but form a coherent whole, a framework theory. 

The change of the framework theory is difficult because it forms a coherent explanatory system, it is 

based on everyday experience, and it is constantly re-confirmed by our everyday experiences in the 

context of lay culture.  After all, the currently accepted scientific explanations are the product of a long 

historical development of science characterized by radical theory changes that have restructured our 

representations of the physical world. More recently we have started to work in the area of 

mathematics.  Although the domain of mathematics is very different from that of science, we believe 

that the same analysis can roughly apply in the case of learning mathematics (see Vosniadou & 

Verschaffel, 2004; Verschaffel & Vosniadou, 2004) 

 The first section of this paper presents two examples of conceptual change, one coming from 

the area of physics (observational astronomy) and the other from the area of mathematics (rational 

number).  The second section provides a more detailed analysis of the theoretical position which also 



explains its similarities and differences with other approaches dealing with the problem of conceptual 

change in learning and development. The paper concludes with a discussion of some of the 

implications of the framework theory approach for the design of instruction in science and 

mathematics.  

 It is our contention that the problem of conceptual change commonly posed in instruction is 

one of the major reasons behind students’ widespread failure to understand concepts in science and 

mathematics. An overwhelming body of educational research has documented the considerable 

difficulties students encounter in these areas. These difficulties are not present only in the case of the 

weaker or younger students.  They are present even in the brighter college students, attending the most 

prestigious universities. Absence of critical thinking, knowledge fragmentation, lack of transfer, and 

misconceptions characterize the reasoning and problem solving of many students, particularly in those 

cases where the new, to-be-acquired information conflicts with the structure of existing, experience-

based, lay knowledge. Finally, it is also our contention that, to a large extent, the general 

ineffectiveness of instructional interventions in this area could be attributed to the inadequate attention 

that has been given so far to the problem of conceptual change. 

 

Two Examples of Instruction-Induced Conceptual Change 

The concept of the earth4 

Children’s initial concept 

 A substantial body of cross-cultural research supports the conclusion that during the preschool 

years children construct an initial concept of the earth based on interpretations of everyday experience 

in the context of lay culture.  According to this initial concept, the earth is a flat, stable, stationary, and 

supported physical object.  Objects located on the earth obey the laws of an up/down gravity, and space 

is organised in terms of the dimensions of up and down.  The sky and solar objects are located above 

the top of this flat earth which is thought to occupy a geocentric universe (see Brewer, this volume; 

Vosniadou & Brewer, 1992; 1994; Nussbaum, 1979; 1985).   

 

Scientific concept 

                                                
4 The term ‘concept’ is used here to denote both individuals’ concepts and the socially shared and culturally accepted scientific 
concepts. 



 As shown in Table 1, the scientific concept of the earth, to which children are exposed at least 

as soon as they enter elementary school, violates practically all of the presuppositions that apply to 

children’s initial earth concept. According to the scientific concept, the earth is a planet – an 

unsupported, spherical, astronomical object – which rotates around its axis and revolves around the sun 

in a heliocentric solar system. People live all around the spherical earth and gravity operates towards 

the center of the earth. Understanding the scientific concept of the earth requires that children re-

categorize the earth to a new ontological category -- from a physical object to an astronomical object. 

We consider this re-categorization to be a form of radical conceptual change.  

“Insert Table 1 about here” 

Conceptual change 

 The hypothesis that the acquisition of the scientific concept of the earth requires conceptual 

change was tested directly in an empirical study by Vosniadou & Skopeliti (2005).  In this study 62 1st  

and 5th grade children were shown 10 cards with the words ‘sun, moon, star, earth, planet, house, cat, 

rock, tree, and car’ and were asked three categorization questions. The results, which are described in 

detail in Table 2,  showed that great majority of the children were able to distinguish physical from 

solar objects and that there was a developmental shift in their categorizations of the earth.   

“Insert Table 2 about here” 

Children’s responses, particularly in the third question, which asked them explicitly to put 

together the things that go with the earth in one group and the things that do not go with the earth in a 

different group, were very revealing.  At grade 1, 35% of the children categorized the earth as a 

physical object and 42% as a solar object, while at grade 5 only 1 child categorized the earth as a 

physical object and 90% categorized it as a solar object. Further, children’s responses to an earth shape 

questionnaire similar to the one used by Vosniadou & Brewer (1992) showed significant correlations 

between children’s categorizations and their earth shape models.   

We concluded that the results support the hypothesis that there is a change in the categorization 

of the earth from a physical to a solar object, and that the re-categorization of the earth as a solar object 

may precede children’s full understanding of the earth as a spherical planet, rotating around its axis and 

revolving around the sun. 

 

Internal Inconsistency and Synthetic models 



 The re-categorization of the earth as a solar object does not take place overnight.  A series of 

cross-sectional developmental studies (e.g., Blown & Bryce, 2006; Diakidoy, Vosniadou & Hawks, 

1997; Nussbaum, 1979; Nussbaum & Novak, 1976; Vosniadou & Brewer, 1992, 1994) as well as a 

some longitudinal studies (Kikas, 1998; Maria, 1993; 1997a, 1997b), support the hypothesis that the 

process of acquiring the scientific concept of the earth is a slow and gradual process which gives rise to 

the construction of alternative conceptions of the earth as well as to internally inconsistent responses. A 

list of the alternative representations constructed by elementary school children in the Vosniadou and 

Brewer (1992) study appears in Figure 1. These accounted for about 90% of the overall responses of 

the 3rd and 5th grade children and 65% of the overall responses of the 1st grade children. The overall 

responses of the remaining children were categorized as mixed5.  

“Insert Figure 1 about here” 

 The internally consistent responses formed a range of alternative models of the earth, starting 

from the initial representation of a flat earth to the scientific representation of a sphere.  The younger 

children tended to represent the earth as a square, rectangle, or disc-like flat, physical object, supported 

by ground below and the sky and solar objects above its top.  Some children formed the interesting 

model of a dual earth, according to which there are two earths: a flat one on which people live and a 

spherical one which is up in the sky and which is a planet.  Another common mis-representation of the 

earth was that of a hollow sphere. According to that model, the earth is spherical but hollow inside. 

People live on flat ground inside the bottom part of the hollow sphere.  Alternatively, the earth was 

conceptualized like a flattened sphere or truncated sphere with people living on its flat top, coved by 

the dome of the sky above its top. 

 These alternative representations of the earth were not rare.  In fact, only 23 of the 60 children 

in the Vosniadou & Brewer (1992) study had constructed the culturally accepted representation of the 

earth as a sphere.  These findings have been confirmed by many cross-cultural studies conducted both 

in our lab (e.g., Diakidoy, Vosniadou & Hawks, 1997; Samarapungavan, Vosniadou & Brewer, 1996; 

Vosniadou, Skopeliti & Ikospentaki, 2004; 2005), as well as by a number of independent investigators 

(Blown & Bruce, 2006; Hayes, Goohew, Heit, & Gillan, 2003; Mali & Howe, 1979)6.  

                                                
5 The children placed in the ‘mixed’ category usually gave a mixture of ‘scientific’ and ‘naïve’ responses, just like the children 
grouped under the ‘alternative models’ category, but their responses were non-systematic and often self-contradictory.  
6 There are a number of studies by Siegal, Nobes and their colleagues (e.g., Nobes, Martin & Panagiotaki, 2005; Siegal, 
Butterworth, Newcombe, 2004) criticizing the above-mentioned findings. For extensive and detailed discussions of the 
theoretical and methodological issues around these studies raise please see Vosniadou, Skopeliti and Ikospentaki (2004, 2005) as 
well as Brewer (this volume).   



 

The process of conceptual change 

 Given that the spherical representation of the earth is so ubiquitous in our culture, one 

wonders why children have such great difficulty understanding it and why they form the alternative 

representations noted above.  The explanation we have given is that the change from a flat earth to a 

spherical earth concept is not a change in a simple belief, but a radical conceptual change. This is 

because the initial concept of the earth is embedded within a larger, framework theory of physics, 

forming a complex construction which is supported by a whole system of observations, beliefs and 

presuppositions constituting a relative coherent and systematic explanatory structure (Vosniadou & 

Brewer, 1992; 1994; Vosniadou, 2007b). Figure 2 shows some of the observations, beliefs and 

presuppositions of the assumed conceptual structure that underlies the initial concept of the earth.   

“Insert Figure 2 about here” 

 Two assumptions are made here which will be discussed in greater detail in the next section. 

One is that the concept of the earth is embedded within a domain-specific, framework theory of 

physics, i.e., a naïve physics.  The second is that categorization is a powerful process that plays an 

important role as a mechanism in learning (Bransford, Brown, & Cocking, 1999; Chi, this volume; Chi 

& Koeske, 1983; Medin & Rips, 2005).  Knowing that an object belongs to a given category allows us 

to infer certain characteristics of the object which can either support learning or hinder it, if the 

category to which it is assigned is inappropriate.  In the case of the earth, its categorization as a 

physical object allows young children to make a host of inferences about the way they interpret 

observational evidence received from experience and draw conclusions regarding certain inaccessible, 

unobservable properties of the earth (e.g.,  that it is supported or that it has an end).  These inferences 

are not subject to conscious awareness and can stand as powerful presuppositions constraining the 

process of learning science. 

 An examination of children’s alternative models of the earth, as well as their internally 

inconsistent responses, suggests that children use enrichment type of learning mechanisms to add the 

new (scientific) information to their initial concept of the earth. While the use of such mechanisms can 

be very appropriate in most situations where the new, to-be-acquired, information is consistent with 

what is already known, they are not very productive when the new information belongs to a scientific 



concept embedded within a theoretical framework incompatible – incommensurate we might say – with 

children’s initial concept of the earth.   

 As we have argued so far, the scientific concept of the earth is embedded within a different 

explanatory framework – that of an astronomical object—a framework that differs in many of its 

presuppositions from the presuppositions of the initial concept of the earth, which is categorized as a 

physical object embedded within a naïve physics.  In cases such as these, where the new information 

comes in conflict with what is already known, the use of additive, bottom-up enrichment mechanisms 

can only lead the learner into small changes which may either fragment what is already known creating 

internally inconsistent pieces of knowledge, or at best lead into the creation of alternative models or 

misconceptions.   

 We have interpreted the alternative models of the earth to be ‘synthetic models’ because they 

seem to result from children’s attempts to synthesize the information that comes from the scientific 

concept, and particularly the information that the earth is a sphere, with aspects of the initial concept of 

the earth, i.e., that it is a solid, stable, supported physical object, with an up/down organization of space 

and gravity.  If we look carefully at all the alternative models of the earth in figure 1, we can see that in 

all cases they represent attempts on the part of the children to solve the problem of how it is possible 

for the earth to be spherical and flat at the same time and how it is possible for people to live on this 

spherical earth without falling down.   

 Furthermore, the process of conceptual change appears to involve a gradual lifting of the 

presuppositions of the framework theory allowing the formation of more sophisticated models of the 

earth, until conceptual change has been achieved. Although most of the empirical support for synthetic 

models comes from cross-sectional studies, the developmental pattern is clear (see also Brewer, this 

volume). The less sophisticated and more fragmented responses occur at the younger ages while the 

more sophisticated synthetic models, and of course the scientific model, are found in the older children. 

Thus, children start with the model of a square or rectangular, supported, stable, and flat earth that meet 

all the presuppositions of the earth as a physical object. The model of the disc earth shows some 

possible influence from the culture reflected in the change in the assumed shape of the earth from 

rectangular to round (but flat). This model could be an initial model or it could result from some 

exposure to scientific information about the shape of the earth. The dual model of the earth is an 

interesting construction that shows how scientific information can be incorporated into the knowledge 



base in a way that does not affect existing knowledge structures that contradict it.  In this model the 

children believe that the spherical earth is different from the flat earth on which we live – it is a planet 

up in the sky.   

 The models of the hollow sphere and the truncated sphere are more sophisticated and are 

formed usually by older children. The model of the hollow sphere presupposes an understanding that 

the earth is spherical and not supported, but it is constrained by an up/down gravity presupposition. The 

children who construct this model believe that people live on flat ground inside the earth because they 

would fell “down” if they lived on the surface of the spherical earth. Similarly, the up/down gravity 

presupposition constrains the understanding of the spherical earth in children who have constructed a 

flattened or truncated sphere, who also believe that people live on flat ground above the top of the 

earth. These children can see the earth as a spherical, suspended and sometimes rotating object but they 

still organise space and gravity in terms of the directions of up/down. These are some of the most 

fundamental presuppositions of a naïve, framework theory of physics. 

 It should be mentioned here that the children placed in the category ‘mixed’ also use 

enrichment types of learning mechanisms to add the new information to their initial concept. The 

difference from the ‘synthetic’ models category is that the children placed in the mixed category were 

either not aware of the internal contradiction in their responses or could not find a way to solve this 

contradiction through the creation of a ‘synthetic model’. Synthetic models are actually quite creative 

constructions as they provide unique solutions to the problem of incommensurability and have 

explanatory power.  In order to avoid internal inconsistency or the creation of synthetic models the 

learner must first of all become aware of the incongruity that exists between the incoming information 

and his/her prior knowledge. Metaconceptual awareness and intentional learning are required for 

conceptual change to be achieved. Learners must also avoid the use of simple, additive mechanisms.  

Conscious, intentional and top-down learning mechanisms, such as the deliberate use of analogy and 

cross-domain mappings, are much better mechanisms for producing radical conceptual change. These 

issues will be discussed in greater detail in the last section of the paper. 

 

The concept of number 

Children’s initial concept 



 It appears that children form an initial concept of number which allows them to deal with 

number-related tasks long before they are exposed to formal instruction in mathematics. Summarizing 

the relevant empirical findings, Gelman (1994) concludes that by four or five years of age children are 

able to “count in principled ways, invent solutions to novel counting problems, detect errors in 

counting trails generated by others and make up counting algorithms to solve simple addition and 

subtraction problems, at least for a limited range of nthe numbers” (p.68). These abilities reflect a 

concept of number close to the mathematical concept of natural numbers. 

 The first years of instruction are dedicated to natural number arithmetic. Thus, the initial 

understandings of number are compatible with school instruction. As a result, the natural number 

concept is further confirmed and strengthened. By the middle of the elementary school years most 

children have built a rich and productive number concept, which is based on counting, and which 

carries all the basic presuppositions of natural numbers described in Table 3.  

 A basic characteristic of this initial understanding of numbers is that numbers are discrete i.e., 

that every number has a unique successor.  In fact, there seems to be some evidence that the property of 

discreteness of numbers may be neurobiologically based, in the sense that humans are predisposed to 

learn and reason with natural numbers (Dehaene, 1998; Gelman, 2000).  Another characteristic is that 

numbers can be ordered by means of their position on the count list, with numerals with more digits 

corresponding to bigger numbers (see also Smith, Solomon, & Carey, 2005).  Numbers are involved in 

the operations of addition and subtraction which can be supported by counting-based strategies (e.g. 

Resnick, 1986). The operation of multiplication is interpreted as repeated addition while division is 

interpreted as partitioning, where the divisor is smaller than the dividend (Fischbein et al., 1985). All 

four operations are seen as having predictable outcomes, in the sense that addition and multiplication 

‘make bigger’, whereas subtraction and division ‘make smaller’ (Fischbein et al., 1985; Moskal and 

Magone, 2000). Finally, it is also assumed that every number has only one symbolic representation, 

that there is a unique numeral that corresponds to each number.  

“Insert Table 3 about here” 

 

The mathematical concept of rational number 

 All of the above-mentioned assumptions underlying students’ number concept come in 

contrast with the mathematical concept of rational number introduced through instruction: Rational 



numbers are not based on counting and they are dense and not discrete. In other words, no rational 

number has a successor within the rational number set, and there are infinitely many numbers between 

any two, non equal, rational numbers. Counting-based strategies cannot support the ordering of rational 

numbers (for example, 1/4 is bigger than 1/5). In addition, ‘longer’ rational numbers are not necessarily 

‘bigger’ (for instance, 3.2 is bigger than 3.197). Operations with rational numbers do not have 

predictable results – in the sense that addition and multiplication may result either in bigger, or in 

smaller outcomes, as in the case of 4+ (-2), or 3x1/2. Multiplication cannot always be conceptualized as 

repeated addition, (consider the case 0.3x1/2) and it is difficult to understand division as partitioning 

when the divisor is bigger than the dividend (e.g. 2:8), or when the divisor is smaller than one (e.g. 

2:0.5).  

 Finally, rational numbers do not have only one symbolic representation.  Rather, they can be 

represented symbolically either as decimals, or as fractions. For example, the number “one half” can be 

represented as 0.5 and also as 1/2. To make things more complicated, the one half can be represented 

also as 0.50, 0.500, 2/4, 4/8, etc. This presents the learner with yet another difficulty: one must realise 

that fractions and decimals7 are alternative representations of rational numbers (and not different kinds 

of numbers), despite their differences in notation, ordering, operations and contexts of use.   

 

Conceptual change 

 While there is no direct evidence of theory change that we know of, there is a great deal of 

empirical evidence showing that rational number reasoning is very difficult for students at all levels of 

instruction and in particular when new information about rational numbers comes in contrast with prior 

natural number knowledge (Moss, 2005; Ni & Zhou, 2005). For instance, many students believe that 

‘longer decimals are bigger’ (e.g. Moskal and Magone, 2000), that ‘multiplication makes bigger’ and 

‘division makes smaller’ (Fischbein et al., 1985), or that ‘the bigger the terms of a fraction, the bigger 

the fraction’ (e.g. Stafylifou & Vosniadou, 2004). Students at elementary, secondary and even 

university levels do not realize that rational and real numbers are dense (e.g. Malara, 2001; Merenluoto 

& Lehtinen, 2002, 2004; Neumann, 1998; Tirosh, Fischbein, Graeber, & Wilson, 1999; Vamvakoussi 

and Vosniadou 2004, 2007, in preparation).  They have many difficulties interpreting and dealing with 

rational number notation, in particular when it comes to fractions (Gelman, 1991; Moss, 2005; 

                                                
7 The term ‘decimal’ is used here to refer only to the decimal numbers that belong to the rational numbers set.  



Stafylifou & Vosniadou, 2004). They do not realize that it is possible for different symbols (e.g., 

decimals and fractions) to represent the same number and thus they treat different symbolic 

representations as if they were different numbers (Khoury & Zazkis,1994; O’Connor, 2001; 

Vamvakoussi & Vosniadou, 2007). 

 

Internal inconsistency and synthetic models 

 Some of the difficulties secondary school students have in understanding rational numbers 

were investigated in a series of studies in our lab, focusing mostly on the discreteness/density divide 

and its interaction with students’ interpretation of rational number notation (Vamvakoussi & 

Vosniadou 2004, 2007, in preparation).  It was hypothesized that the presupposition of discreteness 

which is a characteristic of the initial concept of number, would constrain students’ understanding of 

rational numbers causing fragmentation, internal inconsistency and misconceptions which could be 

interpreted as ‘synthetic models’.  This hypothesis is consistent with the existing empirical evidence for 

students (e.g., Malara, 2001; Merenluoto & Lehtinen, 2002, 2004; Neumann, 1998), as well as for 

prospective teachers (e.g. Tirosh, Fischbein, Graeber, & Wilson, 1999). This is because the initial 

concept of number forms a coherent explanatory system that produces correct predictions and 

explanations in most everyday situations where number reasoning is required.   

 It was also predicted that students would have difficulty understanding that decimals and 

fractions are interchangeable representations of rational numbers, and not different kinds of numbers.  

This is the case because a) decimals and fractions take their meaning from the situations to which they 

refer and these situations are usually qualitatively different (Resnick, 1986),  b) there are considerable 

differences both between the operations and between the ordering of decimals and fractions, and c) 

students may categorize rational numbers on the basis of their notation, which may be considered a 

superficial characteristic by the mathematically versed person, but not by the novices in the domain 

(see Markovitz and Sowder, 1991, Chi, Feltovich, & Glaser, 1981).  

 The results confirmed that the presupposition of discreteness is strong for the younger students 

(7th graders) and remains robust even for older students (9th and 11th graders), despite noticeable 

developmental differences.  Students from all age groups answer frequently that there is a finite 

number of numbers in a given interval, regardless of whether they are asked in an interview 

(Vamvakoussi & Vosniadou, 2004), in an open-ended questionnaire (Vamvakoussi & Vosniadou, 



2007) or a forced choice questionnaire (Vamvakoussi & Vosniadou, 2007, in preparation). Figure 3 

presents the distribution of the 549 participants in our third study (Vamvakoussi & Vosniadou, in 

preparation), based on the number of ‘finite’ versus ‘infinite’ responses they gave to the question “How 

many numbers are there between X and Y”, where the pair ‘X and Y’ could be integers, decimals or 

fractions (in a total of 10 items, consisting of 2 integer, 4 decimal and 4 fraction questions). FIN 

students gave at least 7 ‘finite’ responses while INF students gave at least 7 ‘infinite’ responses.  

FIN/INF included all the remaining students. As can be seen, the 7th grade students gave mostly finite 

responses, while the older students were placed mostly in the FIN/INF and FIN categories.   

Nevertheless 30% of the 9th and 11th grade students were still categorised in the most naïve, FIN 

category.  

“Insert Figure 3 about here” 

 Second, the results showed that the presupposition of discreteness is not ‘lifted’ overnight.  In 

other words, it is not the case that students become aware of the infinity of numbers at some point and 

then consistently apply it to all the given intervals. Rather, there seems to be a pattern of development 

during which information regarding the dense structure of numbers is slowly added on to existing 

conceptual structures: This developmental pattern seems to be roughly the following:  a) the 

presupposition of discreteness is lifted first for integers and then for decimals and fractions, b) there is 

some indication that students apply the notion of infinity first to decimals and then to fractions, and c) 

infinity seems to be initially restricted to numbers of the same symbolic representation within an 

interval, i.e., only decimals between decimals and integers, and only fractions between fractions.  

 To illustrate these points, a more refined sub-categorization of the participants within the 

categories FIN, FIN/INF and INF in the Vamvakoussi and Vosniadou (in preparation) study is 

presented in Table 4.  As can be seen, we can identify an initial, all finite model in the category FIN, as 

well a kind of an integers only synthetic model consisting of students who seem to apply the notion of 

infinity in integers but not in decimals and fractions.  In the category FIN/INF we see the emergence of 

the decimal –fraction distinction. Students in this sub-category answer differently when the interval 

ends are fractions, as compared to when they are decimals. More specifically, these students may a) 

give an INF answer for decimals, but a FIN answer for fractions, or b) give an INF answer for 

decimals, but  an FIN answer for fractions. Usually, this distinction is in favour of decimals. Finally in 

the INF category the most interesting distinction is between the advanced model and the sophisticated 



model.  In both of these models the students give only INF responses, however, in the advanced model 

they prefer to place decimals between decimals and fractions between fractions, while in the 

sophisticated model they are willing to accept that they may have different symbolic representations. 

“Insert Table 4 about here” 

 To sum up, it appears that students form an initial understanding of number roughly as natural 

number. This initial concept then stands in the way of understanding the concept of rational number 

presented to students through instruction. Understanding the mathematical concept of rational number 

requires a re-structuring of the initial concept of number.  This is not easy to happen. Students need to 

realize that certain presuppositions, like the discreteness of numbers, are valid only in specific contexts. 

Also, learning about rational numbers requires from students to construct meanings for new symbolic 

notations -- fractions and decimals – not encountered before (Gelman, 1991; Stafylidou & Vosniadou, 

2004). In addition to the difficulty of interpreting decimal and fractional notation in its own right, 

students have to realize that different symbolic notations refer to the same object, i.e., that decimals and 

fractions are interchangeable representations of rational numbers, and not different kinds of numbers. 

 The empirical evidence suggests that students are using conservative, additive, enrichment 

types of mechanisms to add new information to existing but incompatible conceptual structures. These 

mechanisms create internal inconsistency and ‘misconceptions’ of the rational number concept which 

can be explained as ‘synthetic models’. One of these synthetic models is to conceptualize the rational 

numbers set as consisting of three different and unrelated ‘sets’ of numbers: whole numbers, decimals, 

and fractions.  As they come to understand the principle of density through instruction, students then 

apply this principle additively to the different ‘sets’ of numbers.  As a result, students come to think 

differently for integers, decimals, and fractions in terms of their structure (discrete vs. dense). They 

also become reluctant to accept that there might be fractions between two decimals, or vice versa. This 

phenomenon has been noted also by Khoury and Zazkis (1994) and reported by O’Connor (2001) as a 

fact noticed by mathematics teachers. 

 

Summary  

 Despite the enormous differences in the two concepts we analyzed, which are embedded in 

very different domains of thought, we can observe certain important similarities.  In both cases we have 

a situation where the new concept, regardless of whether it is of a scientific or a mathematical nature, 



comes in conflict in practically all its major ontological presuppositions with the expected prior 

knowledge of the student.  In both cases there is adequate empirical evidence to support the conclusion 

that an initial concept of the earth and an initial concept of number is constructed early on, in the 

process of spontaneous knowledge acquisition on the basis of everyday experience in the context of lay 

culture. This concept is embedded within a naïve theory of physics or of number that forms a narrow 

but relatively coherent explanatory structure. The new information presented through instruction comes 

in conflict with the presuppositions of the existing framework theory. Being largely unaware of this 

conflict students assimilate the new information into the existing but incompatible knowledge base 

using enrichment type mechanisms which result in internally inconsistent responses or in the formation 

of synthetic models.  Enrichment type mechanisms can be very successful in many cases of knowledge 

acquisition but fail in situations that require conceptual change, because of the incompatibility between 

the way knowledge is structured in the students’ knowledge base and the structure of the scientific or 

mathematical concept presented through instruction.  

  

The framework theory approach 

 The framework theory approach is based on cognitive/developmental research and attempts to 

provide a broad theoretical basis for understanding how conceptual change is achieved in the process of 

learning science. There are certain fundamental assumptions which characterize this approach which 

are discussed below. In short, it is claimed that there is enough empirical evidence coming from 

research in cognitive development to support they view that concepts are embedded in domain specific 

‘framework theories’ which represent different explanatory frameworks from currently accepted 

science and mathematics (see Carey, 1991; Carey & Spelke, 1994; Hatano, 1994; Keil, 1994).  These 

framework theories are constructed early on and are based on children’s interpretations of their 

common everyday experiences in the context of lay culture. Because learners use additive, enrichment 

types of learning mechanisms to assimilate the new incompatible information to existent knowledge 

structures, the process of learning science and mathematics is slow and gradual and characterized by 

fragmentation, internal inconsistency and misconceptions, some of which can be interpreted as 

‘synthetic models’ (Vosniadou & Brewer, 1992; 1994; Vosniadou, Baltas & Vamvakoussi, 2007).  

 

Domain specificity 



 Most theories of learning and development, such as Piagetian and Vygotskian approaches, 

information processing or socio-cultural theories are domain general.  They focus on principles, stages, 

mechanisms, strategies, etc., that are meant to characterize all aspects of development and learning. In 

contrast, domain specific approaches focus on the description and explanation of the changes that take 

place in the content and structure of knowledge with learning and development as well as on 

mechanisms and strategies that are specific to these changes.  

 The idea that human cognition includes domain-specific mechanisms for learning is based on 

a number of independent research traditions and sets of empirical findings, some coming from animal 

studies (Gallistel, 1990), others based on Chomsky’s work in linguistics (Chomsky, 1988). Some 

cognitive developmental psychologists see domain specificity through the notion of domain specific 

constraints on learning (Keil, 1981, 1990). It is argued that such constraints are needed in order to 

restrict the indeterminacy of experience (Goodman, 1972) and guide, amongst others, the development 

of language (Markman, 1989), numeric understanding (Gelman, 1990), or physical and psychological 

knowledge (Wellman & Gelman, 1998).  

 There is a great deal of debate in the literature as to whether domain specific constraints 

should be seen as hardwired and innate as opposed to acquired, and as having representational content 

or not (see Elman et al., 1996). Hatano and Inagaki (2000) suggested that constraints are innate domain 

specific biases or preferences that mitigate the interaction between a learning system and the 

environment.  They also introduced the notion of ‘socio-cultural constraints’. They argue that  socio-

cultural factors can also guide learning and development by restricting the possible range of alternative 

actions thus leading the learner to select the most appropriate behaviour (see also Hatano & Miyake, 

1991;  Keil, 1994).  

 Finally, some domain specific approaches focus on the description of the development of 

expertise in different subject-matter areas, such as physics (Chi, Feltovitch, & Glaser, 1981), 

mathematics (VanLehn, 1990; Mayer 1985) or chess (Chase & Simon, 1973), without necessarily 

appealing to innate modules or constraints.   

 Our position is that it is more profitable to study learning from a domain specific point of view 

that allows us to make hypothesis about the way a specific content is structured (and re-structured), 

without necessarily committing ourselves to innate constraints or modules. We also believe that 

domain-specific approaches should be seen as complimentary rather than contradictory to domain 



general approaches.  It is very likely that both domain general and domain specific mechanisms apply 

in development and learning (Keil, 1994). 

 

Framework theories, specific theories and mental models 

 The human child is a complex organism capable of engaging in quick and efficient learning 

immediately after birth. Cognitive developmental research has provided substantial empirical evidence 

to support the view that children organize the multiplicity of their sensory experiences under the 

influence of everyday culture and language into narrow but relatively coherent, domains of thought 

from very early on (Baillargeon, 1995; Carey & Spelke, 1994; Gelman, 1990). It appears that at least 

four well defined domains of thought can be distinguished and considered roughly as ‘framework 

theories’ – physics, psychology, mathematics, and language.   

 Each one of these domains has its unique ontology -- applies to a distinct set of entities.  For 

example, physics applies to inanimate bodies, psychology applies to animate entities, mathematics to 

numbers and their operations and language to lexical items and their operations. Each domain is also 

governed by a distinct system of principles and rules of operation. Physical entities obey the laws of 

mechanical causality as opposed to psychological entities that are governed under intentional causality. 

Language and mathematics have their own unique rules and principles of organisation.  We are not 

going to delve further into these differences here8.  The important point to make is that in all these 

cases we are not dealing with a collection of unrelated pieces of knowledge but with coherent and 

principle-based systems.  

 Each one of these domains of thought has certain procedures for identifying the entities that 

belong to the domain. For example, it appears that the criterion of self-initiated vs. non-self-initiated 

movement is used by infants to distinguish physical from psychological entities.  Once categorized as a 

physical or psychological object, an entity inherits all the characteristics and properties of the entities 

that belong to the domain.  As mentioned earlier, categorization is a very important learning 

mechanism in this respect.  We assume that concepts are embedded in framework theories (such as a 

naïve physics, psychology, mathematics, etc.) and that they inherit all the properties of the framework 

theory to which they belong. In addition, they may contain additional information which belongs 

specifically to the concept – has the form of a ‘specific theory’. The hypothesized internal structure of 

                                                
8 Language development does not seem to be characterised by theory-changes, but some of the difficulties students experience in 
learning a foreign (or second) language may be of a similar nature. 



the initial concept of the ‘earth’ is described in figure 2.  This structure includes specific information 

about the earth, coming from observation and from the culture (i.e., that the earth is flat, the sky is 

above the earth, etc.), but interpreted within the constraints of the framework theory. The concept of 

the earth is not stable (although reference is), but evolves and develops with knowledge acquisition, 

with changes happening both at the level of the specific theory and at the level of the framework 

theory.  

 Finally, we assume that human beings have a cognitive system that allows them to create 

analog mental representations of physical objects that embody the internal structure of the concept and 

can be run in the mind’s eye to generate predictions and explanations of phenomena (see Nerserssian, 

this volume for a discussion of some of these issues). For example, we can create a mental model of the 

earth and we can use this model to answer questions like ‘What will happen if you were to walk for 

many days on the earth?  Is there an end/edge to the earth? Can you fall from this earth?’ Depending on 

our mental model of the earth we can answer this question in different ways. In our previous work 

(Vosniadou & Brewer, 1992; 1994 – see also Brewer, this volume) we provided numerous examples 

that demonstrate beyond any possible doubt that even very young children are capable of using the 

earth, the moon and the sun as theoretical entities in models that can be run in the mind to make 

predictions and provide explanations of phenomena. 

 

Conceptual change 

 There is substantial evidence that cognitive development is characterized by conceptual 

change.  For example, in the domain of biology, cross sectional developmental studies show that the 

biological knowledge of the 10 year old is qualitatively different from that of the 4-6 year old child 

(Carey, 1985; Carey, 1991; Keil, 1994; Hatano and Inagaki, 1997; Inagaki & Hatano, 2003; this 

volume), although there is considerable disagreement as to how exactly this development proceeds. 

Theory changes in the domain of biology have been described in terms of three fundamental 

components: the ontological distinctions between living/non-living and mind/body, the modes of 

inference that children employ to produce predictions regarding the behaviour of biological kinds, and 

third, the causal-explanatory framework children employ -- e.g., intentional as opposed to vitalistic or 

mechanistic causality (Inagaki & Hatano, 2003). 



 Similar re-organizations of conceptual knowledge across early childhood years can be found 

amongst others, in children’s concept of mind (Wellman, 1990), concept of matter (Smith, Carey, & 

Wiser, 1985; Wiser & Smith, this volume), concept of force (Chi, 1992; Ioannides & Vosniadou, 

2002), concept of number (Smith, Solomon & Carey, 2005), and concept of the earth (Vosniadou & 

Brewer, 1992, 1994). As described earlier, the empirical evidence in the area of observational 

astronomy has shown that considerable qualitative changes take place in children’s concept of the earth 

between the ages of 4-12. Pre-school children think about the earth as a stable, stationary and flat 

physical object located in the centre of the universe. On the contrary, most children at the end of the 

elementary school years think of the earth as a spherical astronomical object, rotating around it and 

revolving around the sun in a heliocentric solar system. In this process, a significant ontological shift 

takes place in the concept of the earth which is categorized as a physical object by the majority of first 

graders but as a solar, astronomical object by the majority of sixth graders (Vosniadou & Skopeliti, 

2005). Similar ontological shifts have been pointed out in the case of the concept of force and of heat 

amongst others (Chi, 1992, Ioannides & Vosniadou, 2002; Wiser & Carey, 1983).   

 

Mechanisms of conceptual change and the problem of incommensurability 

 Conceptual change can happen either through the use of bottom-up, implicit and additive 

mechanisms, or through the use of top-down, deliberate and intentional learning mechanisms, assuming 

of course, a continuous interaction between an individual and a larger, surrounding cultural context. 

Examples of the former can be mechanisms like the Piagetian assimilation and accommodation, the use 

of similarity-based analogical reasoning (Vosniadou, 1989), internalization (Vygotsky, 1978), or even 

the appropriation of cultural practices of the situated theorists (Rogoff, 1990). Examples of the latter 

are the deliberate use of analogy and models that allow mappings across domains, the construction of 

thought experiments and limited case analyses, and translations from physical language to the language 

of mathematics, (see Carey & Spelke, 1994; Nersessian, 1992; Vosniadou, 2007c).  Very important are 

also to mention several social kinds of mechanisms that can facilitate conceptual change, like 

collaboration (Miyake, this volume) and class discussion (Hatano & Inagaki, 2003). 

 According to Carey (1991) ordinary, intuitive, cognitive development involves radical 

conceptual changes of the nature described earlier which cannot be explained if we assume that 

children only use enrichment types of mechanisms.  She agrees with Spelke (1991) that enrichment 



types of mechanisms cannot produce radical conceptual change but can only form new beliefs over 

concepts already available. In Carey and Spelke (1994) the evidence supporting the claim for 

spontaneous conceptual change is again reviewed and certain possible mechanisms are discussed that 

are mainly based in mappings across different domains of thought. For example, changing conceptions 

of number (from natural number to rational number) are thought to depend on the construction of 

mappings between number and physical objects as the child learns measurement (see also Gelman, 

1991), and that the development of mechanistic biology and mechanistic psychology require mappings 

from the domain of psychology to physics.  

 We also believe that cross domain mappings and the use of thought experiments and limited 

case analyses are powerful mechanisms for conceptual change that they should be encouraged in 

instruction.  However, the results of many empirical studies show that most of the conceptual changes 

that happens spontaneously in cognitive development are the product of enrichment types of 

mechanisms, that are not under the conscious control of the learner. These types of mechanisms are 

capable of producing radical conceptual change if we assume a) that the knowledge base has a theory-

like internal structure, and b) new information is coming in through observation and from the culture. 

In other words, they presuppose that children will grow in a culture with a developed science and that 

they will be exposed to the re-structured concepts either through participation in the adult lay culture 

and language or through systematic science and math instruction.   

 For example, young children categorize plants usually as non-living things.  However, 

everyday experiences with plants, such as watering plants, seeing them become bigger, or noticing that 

they can die, in the context of an adult culture and language, can slowly lead the children to understand 

that plants are similar to animals in certain properties, such as feeding, growing, and dying.  These 

similarities can eventually make children re-categorize plants as living things, rather than as inanimate 

objects, despite the fact that they lack self-initiated movement (Hatano, 1996; 2002). This category 

change can be described as branch jumping (Thagard, 1988), or as an ontological category shift (Chi, 

1992), and represents a considerable re-organization of the concept of living thing (Carey, 1985), that 

can be characterized as requiring conceptual change.  Similar ontological category changes can be 

produced when children are given direct feedback on plants’ capacity for goal-directed movement (see 

Opfer & Siegler, 2004). In fact, it appears that learning about teleology is more effective than learning 

about the need for water and food on the categorization of plants, possibly because the former criterion 



(goal directed movement) is more critical for categorizing an entity as a living thing than the latter 

(need for food and water).  

 Although the use of bottom-up, implicit, additive mechanisms can be useful in producing even 

radical kinds of conceptual changes under conditions of spontaneous cognitive development, they can 

also be the source of producing internal inconsistency and synthetic models in many instances where 

‘instruction-induced conceptual change’ is needed. This is the case because the teaching of science 

usually takes place in a school context where students are required to understand in a short period of 

time counter-intuitive concepts that took several scientific revolutions to be constructed.  Furthermore, 

it is often the case that inappropriate curricula are used by teachers who are not always knowledgeable 

about the problem of conceptual change and who may not fully understand the magnitude of the 

difficulties experienced by students (see Duit et al., this volume). In these situations, instruction-

induced conceptual change becomes a slow process during which the new, counter-intuitive, scientific, 

information is assimilated into students’ initial concepts, creating internal inconsistency and 

misconceptions. Many of these misconceptions are synthetic models, formed as learners assimilate the 

scientific information to an existing but incompatible knowledge base without metaconceptual 

awareness (Vosniadou, 2003, 2007b).  

 A number of experimental studies in our lab have confirmed that the above mentioned 

processes are taking place in the learning of science. For example, figure 4 shows the synthetic models 

of the layers and composition of the earth’s interior revealed in the drawings and verbal explanations of 

students in grades 1, 6, and 11 (Ioannidou & Vosniadou, 2001). Most first graders believe that the earth 

contains only solid materials (i.e., ground and rocks) arranged in flat layers. Notice that the flat 

layering representation of the assumed earth’s interior is used in children’s drawings even in those 

cases where the earth is seen as round. When the students are instructed about the existence of magma 

inside the earth, they seem to think that the magma is placed at the bottom, rather than in the center, of 

the spherical earth.  It is only later on that the circular layering appears in their drawings, with the 

magma placed in the center of the spherical earth. Even the 11th grade students (as well as most 

undergraduate perspective teachers) believe that magma is located very deep in the center of the earth, 

rather than relatively close to its surface, and have difficulties understanding the scientific explanations 

of volcanoes and earthquakes.  

“Insert Figure 4 about here” 



 In another study (Kyrkos & Vosniadou, 1997), we investigated the development of the 

scientific concept of photosynthesis, which has shown to be a very difficult for students to understand 

(Barker & Carr, 1989; Haslam & Treagust, 1987;Wandersee, 1983). From the perspective of the 

framework theory approach, students’ difficulties arise from the incommensurability between the 

scientific and naïve explanatory frameworks of plant development.  

As it is shown in Table 5, most first graders consider plants and in the context of a 

psychological framework theory, explaining plant development through an analogy to animals. More 

specifically, they think that plants take their food (i.e., water and other nutrients) from the ground 

through their roots and that they grow as food accumulates in small pieces inside them.  As instruction 

about photosynthesis comes in, this initial explanation becomes fragmented, and a number of different 

synthetic models can be formed. Some of them are shown in Table 6.   One synthetic model is 

analogous to the ‘dual earth’ model of the earth.  In other words, students retain their initial explanation 

of how plants grow through feeding, and add to it some information about photosynthesis as referring 

to a different plant function, that of ‘breathing’: Plants take in dirty air, they clean it and give out clean 

air.  Another synthetic model is to add to the initial explanation of feeding, a naïve interpretation of 

photosynthesis. According to this model, plants take food and water from the ground through their 

roots, but also take food from the air and light through their leaves.  A more advanced model of 

photosynthesis develops in older children who understand that plants make food by themselves but still 

think of it in terms of mixing elements and not as a chemical process. 

“Insert Tables 6 and 7 about here)” 

 

Similarities and Differences with Other Approaches 

Piaget’s ‘global restructuring’ 

 Most approaches to learning, including behaviorist, Piagetian, and Vygotskian sociocultural 

approaches are domain general approaches based on enrichment type of learning mechanisms. Piaget 

(1970) has described cognitive development as proceeding through a series of stages, each of which is 

characterized by a different logical-psychological structure.  In infancy, intellectual structures take the 

form of concrete action schemas.  During the preschool years, these structures acquire representational 

status and later develop into concrete operations --described in terms of groupings based on the 

mathematical notion of sets and their combinations. The last stage of intellectual development, formal 



operational thought, is characterized by the ability to engage in propositional reasoning, to entertain 

and systematically evaluate hypotheses, etc. This type of restructuring applies to all domains of thought 

and has been characterized as ‘global restructuring’.  

 Cognitive development according to Piaget is the product of the natural, spontaneous process 

of constructive intellectual development and not of explicit learning. Nevertheless, experience will be 

interpreted differently at different stages depending, on the logic of the underlying conceptual 

structures.  The understanding of science concepts is usually thought to require formal operational 

thinking.  

 Piaget was instrumental in introducing individual, psychological constructivism (as opposed 

to social constructivism) to learning research.  The importance of prior knowledge and the mechanisms 

of assimilation, accommodation and equilibration in the context of constructivism are important 

contributions of Piagetian theory to learning and instruction. Although we agree with the above-

mentioned aspects of Piagetian theory, the conceptual change approach described in this paper, differs 

in important ways from Piaget’s views. The differences have mainly to do with the emphasis on 

knowledge acquisition in specific subject-matter areas and the notion of ‘domain-specific’ as opposed 

to ‘global restructuring’. The present approach focuses on knowledge acquisition in specific subject-

matter areas and describes the learning of science concepts as a process that requires the significant re-

organization of existing domain-specific knowledge structures. Emphasis is placed on the one hand the 

influence of initial framework theories on the learning process, and on the other on the importance of 

social, cultural and educational environments in the re-structuring process. 

 

The ‘classical approach’ to conceptual change 

 The first attempts to interpret Kuhnian theory in science education resulted in the ‘classical 

approach’ which claimed that the learning of science involves the replacement of persistent, theory-like 

misconceptions (McCloskey, 1983a; 1983b; Posner Strike, Hewson and Gertzog, (1982). 

Misconceptions were defined as student conceptions that produced systematic patterns of error.  

Misconceptions were seen as being either the result of instruction or as ‘preconceptions’ originating 

prior to instruction. Posner, et al. (1982) drew an analogy between Piaget's concepts of assimilation and 

accommodation and the concepts of "normal science" and "scientific revolution" offered by 

philosophers of science such as Kuhn (1962) and derived from this analogy an instructional theory to 



promote "accommodation" in students' learning of science. The work of Posner et al. (1982) became 

the leading paradigm that guided research and practice in science education for many years.  

 Smith, diSessa, & Rochelle (1993) criticized the misconceptions position on the grounds that 

it presents a narrow view of learning that focuses only on the mistaken qualities of students’ prior 

knowledge and ignores their productive ideas that can become the basis for achieving a more 

sophisticated mathematical or scientific understanding. Smith et al. (1993) argued that misconceptions 

should be reconceived as faulty extensions of productive knowledge, that misconceptions are not 

always resistant to change, and that instruction that “confronts misconceptions with a view to replacing 

them is misguided and unlikely to succeed” (p. 153).  

 We agree with the attempts by diSessa (1993) and Smith et al. (1993) to provide an account of 

the knowledge acquisition process that captures the continuity one expects with development and has 

the possibility of locating knowledge elements in novices’ prior knowledge that can be used to build 

more complex knowledge systems.  We also agree with their proposal to move from single units of 

knowledge to systems of knowledge that consist of complex substructures that may change gradually 

indifferent ways. Finally, we agree with Smith et al’s (1993) urge to researchers to “move beyond the 

identification of misconceptions” towards research that focuses on the evolution of expert 

understandings and particularly on “detailed descriptions of the evolution of knowledge systems over 

much longer durations than has been typical of recent detailed studies (p. 154). 

 It could be argued that the ‘framework theory’ approach we propose is really not very 

different from the traditional misconceptions position criticised by Smith et al (1993).  But this is not 

the case. Our position meets all the criticisms of Smith et al. (1993). First, we are not describing 

unitary, faulty conceptions but a complex knowledge system consisting of presuppositions, beliefs, and 

mental models organised in theory-like structures that provide explanation and prediction. This system 

is not static but constantly developing and evolving and influenced by students’ experience and the 

information they receive from the culture. Second, we make a distinction between initial concepts, 

based on initial framework theories, prior to instruction, and those that result after instruction.  We 

argue that information presented through instruction can cause students to become internally 

inconsistent or to form misconceptions and synthetic models. This is the case because the new 

information is simply added on to prior but incompatible knowledge through constructive, enrichment 

type mechanisms.  Synthetic models are one form of knowledge organisation that can result from this 



process. Synthetic models are not stable, but dynamic and constantly changing as children’s developing 

knowledge constantly evolves. Finally, it should be clear from the above that our theoretical position is 

a constructivist one, as it explains misconceptions to result from students constructive attempts to add 

new information onto existing but incompatible knowledge structures. Last, our approach provides a 

comprehensive framework within which meaningful and detailed predictions can be made about the 

knowledge acquisition process.  

 

The ‘knowledge in pieces’ view  

 DiSessa (1988; 1993, this volume) has put forward a different proposal for conceptualizing 

the development of physical knowledge.  He argues that the knowledge system of novices consists of 

an unstructured collection of many simple elements known as phenomenological primitives (p-prims) 

that originate from superficial interpretations of physical reality. P-prims are supposed to be organized 

in a conceptual network and to be activated through a mechanism of recognition that depends on the 

connections that p-prims have to the other elements of the system.  According to this position, the 

process of learning science is one of collecting and systematizing the pieces of knowledge into larger 

wholes. This happens as p-prims change their function from relatively isolated, self-explanatory 

entities to become pieces of a larger system of complex knowledge structures such as physics laws. In 

the knowledge system of the expert, p-prims “can no longer be self-explanatory, but must refer to much 

more complex knowledge structures, physics laws, etc. for justification (diSessa, 1993, p. 114).  

 Our position is not inconsistent with the view that something like diSessa’s p-prims constitute 

an element of the knowledge system of novices and experts.  We believe that p-prims can be 

interpreted to refer to the multiplicity of perceptual and sensory experiences obtained through 

observations of physical objects and interactions with them. In the conceptual system we propose, 

diSessa’s p-prims would take the place of observation-based beliefs. Our proposal that the conceptual 

system consists of different kinds of knowledge elements (such as beliefs, presuppositions and mental 

models) is also consistent with diSessa’s proposal that we need to focus not on single conceptions but 

on rich knowledge systems composed of many constituent elements. 

 Disessa argues that p-prims are basically unstructured or loosely organized in the conceptual 

system of the novice. It is through instruction and exposure to the scientific theory that p-prims lose 

their self-explanatory status and become organized in larger theoretical structures such as physical 



laws.  According to diSessa this change in the function of p-prims is a major change from “intuitive to 

expert physics”.   

 In our view, (and to the extent that knowledge elements such as p-prims could be postulated to 

operate in our conceptual system), p-prims should become organized in knowledge structures much 

earlier than diSessa believes.  If this is so, the process of learning science is not one of simply 

organizing the unstructured p-prims into physics laws but rather one during which they need to be re-

organised into a scientific theory.  This is a slow, gradual process, precisely because we are dealing 

with many knowledge elements. 

 

Sociocultural approaches 

 Criticisms from sociocultural theorists point out that conceptual change is not an individual, 

internal, cognitive process, as it is often seen from a purely cognitive perspective. Rather, they think it 

should be considered as a social activity that takes place in complex sociocultural settings that also 

involve the use of symbolic languages, tools, and artefacts.  We also believe that it is important to 

consider the role of sociocultural practices, tools, and contexts in problem solving and reasoning. 

However, this should be not be done without consideration of the crucial role individual minds play in 

intellectual functioning. As Hatano (1994) aptly expresses “although understanding is a social process, 

it also involves much processing by an active individual mind. It is unlikely that conceptual change is 

induced only by social consensus. The post-change conceptual systems must have not only coherence 

but also subjective necessity. Such a system can be built only through an individual minds’ active 

attempts to achieve integration and plausibility” (pp. 195).  

 A second criticism coming from the more radical expression of sociocultural theory raises 

questions about the very nature of concepts and the ontological status of knowledge itself.  From the 

point of view of sociocultural theory, knowledge is not something that can be acquired, develop, or 

change but “a process, an activity that takes place among individuals, the tools and artifacts that they 

use, and the communities and practices in which they participate” (Greeno et al., 1996, p. 20).  

This position emerged in an effort by sociocultural theorists to explain the results of a set of 

empirical findings showing that learning is highly influenced by contextual and situational factors and 

that there is often a lack of knowledge transfer, usually in cases where information learned in school 

needs to transfer to everyday, out of school situations (see Vosniadou, 2006 for a discussion of these 



issues).  For example, studies of math problem solving in practical situations have shown that the 

procedures used for problem solving at school do not transfer to math problem solving in everyday 

contexts (Carraher, Carraher, & Schliemann, 1985; Lave, 1988; Scribner, 1984). These findings have 

led some researchers to propose a highly contextualized view of knowledge as a process of 

participation in sociocultural activities (see also Sfard, 1998).  

 While it is important to recognize the problems that cognitive theory has with transfer as 

identified by sociocultural theorists, the move to deny any objectification of knowledge – and thus of 

the possibility of any transfer, does not provide a viable solution. There is an enormous body of 

empirical evidence demonstrating beyond any possible doubt  the transfer of prior knowledge and its 

effects, positive or negative, on reasoning, text comprehension, language communication, problem 

solving, memory and the acquisition of new knowledge (see Bransford,  1979; Bransford, Brown, & 

Cocking, 1999, for relevant reviews).  

We believe that there is a different interpretation of the results of the practical math studies, 

which is very much related to the problem of conceptual change. More specifically, we claim that 

researchers have overlooked the fact that there is an important asymmetry in knowledge transfer; i.e., 

that it is difficult when scientific or mathematical knowledge acquired in school settings needs to be 

transfered to everyday situations, but not the other way around. Knowledge acquired in everyday 

settings is ubiquitous and transfers spontaneously and without any difficulty. The construction of 

misconceptions and synthetic models is additional evidence for the existence of such knowledge 

transfer (Vosniadou, 2007a).  

 As it was earlier discussed, many science and mathematics concepts are difficult to learn 

because they are embedded in different explanatory frameworks from the initial, framework theories 

constructed by children early on in development.  In these situations, it is very common for knowledge 

acquired in school settings either to remain unrelated to prior knowledge, or to be added to what is 

already known through the use of additive, enrichment mechanisms. As mentioned earlier, many 

misconceptions can be interpreted as synthetic models, resulting from the implicit use of bottom-up, 

additive learning mechanisms in situations where the new information, belongs to a different 

explanatory framework from that of prior knowledge.  These implicit but constructive attempts are 

nothing more than the instances of negative transfer where prior knowledge stands in the way of 

understanding science and math concepts.  



 Such findings are not easy to explain from a sociocultural perspective, that denies any 

objectification of knowledge. This is the reason why some sociocultural researchers dismiss the effects 

of prior knowledge and the evidence for negative knowledge transfer and synthetic models altogether 

(e.g., Schoultz, Saljo and Wyndhamn, 2001; Nobes, et al., 2005).  These researcher consider the 

empirical findings demonstrating the presence of misconceptions to be methodological artifacts, caused 

by flaws in studies conducted from a cognitive perspective that focus on unobservable, inside-the-head, 

mental structures.  They claim that these difficulties disappear when thinking and reasoning is analyzed 

from a discursive point of view, as a tool dependent activity. However, the strategy to deny the 

empirical findings regarding misconceptions or the effects of prior knowledge in general, is totally 

inadequate and does not solve any problems. It is true that children produce fewer misconceptions 

when forced-choice questionnaires are used and cultural artefacts like a globe are present, but they still 

have considerable difficulty understanding science and math concepts (see Brewer, this volume; 

Vosniadou et al., 2004, 2005, Erhlin, 2007).  Students’ difficulties in learning the concepts of current 

science and mathematics have been documented in hundreds of studies and represent one of the most 

pressing problems of schooling.  They are not going to disappear because they are not consistent with 

the radical sociocultural perspective. Rather, it is the sociocultural perspective that needs to be 

modified to allow for the possibility to objectify knowledge.  

 To sum up, in order to explain the basic empirical findings in learning research and 

particularly around the problem of transfer, we need to take seriously into consideration the problem of 

conceptual change. We need to understand the asymmetry that exists in transfer situations and the 

causes of this asymmetry. This necessitates an approach on concepts that neither denies their existence, 

like the radical sociocultural perspective, nor considers them as stable and unchanging structures.  

Rather, concepts should be seen as flexible and malleable structures, influenced by the surrounding 

context, but also developing and evolving as the larger frameworks within which they are embedded 

also change. 

 Finally a third criticism coming from radical sociocultural theory is the denial of mental 

representations and mental models.  From our point of view human’s ability to form mental 

representations of the environment is important because it helps in the de-situation of cognitive activity 

(Greeno, 1988). Not only can we form mental models of the physical environment, we can also 

objectify these representations further in the creation of tools and artifacts that can then be used as 



external, prosthetic devices in thinking.  The sociocultural perspective emphasizes the importance of 

cultural artifacts and the role they play as facilitators of thinking.  But it does not explain how human 

culture created these artifacts in the first place.  Model-based reasoning is the key to understanding how 

humans created the rich cultural environments that mediate our social and intellectual life.  Cultural 

mediating structures can range from symbolic systems like language, mathematics, reading, writing, to 

artifacts like pencil and paper, calculators and computers.  But even traffic lights, supermarket layouts, 

or categorization systems can be considered as symbolic structures that mediate our activities.  

 Individuals can form mental models not only of their everyday, physical experiences, but also 

of the cultural artifacts they use. Cultural artifacts like maps and globes can be internalized and used in 

instrumental ways in revising representations based on everyday experience.  As mentioned earlier, our 

studies of children’s reasoning in astronomy provide important although preliminary information about 

how individuals can construct mental representations that are neither copies of external reality nor 

copies of external artifacts, but creative synthetic combinations of both.  This suggests that the 

cognitive system is flexible and capable of utilizing a variety of external and internal representations to 

adapt to the needs of the situation (Vosniadou, Skopeliti & Ikospentaki, 2004, 2005). 

   

Some Implications for Instruction 

 A large body of empirical evidence has been accumulated in the last 20 or so years pointing to 

the problem of conceptual change, particularly in the areas of science and mathematics. Nevertheless, 

the relevant findings and results have not yet found their way in everyday classroom practices. This is 

true both for science teaching (Duit, 2007; this volume) and mathematics (see also Greer, 2004, 2006; 

Resnick, 2006).  Science and mathematics educators often believe that there is little or no prior 

knowledge that students bring to the learning task. Or, they believe that new concepts can always be 

built upon prior knowledge through enrichment types of mechanisms.  They do not understand that 

prior knowledge can sometimes hinder the acquisition of new information.    

Teaching for conceptual change requires that teachers pay attention to the prior knowledge 

that students bring to the learning task and finding ways not only to enrich this prior knowledge but 

also to change it, leading eventually to the formation of new structures. This requires the design of 

appropriate curricula and of instruction that aims towards the creation of motivated, life-long learners 



who have the necessary metaconceptual awareness and intentional learning strategies to engage in 

prolonged and meaningful learning (Vosniadou, Ioannides, Dimitrakopoulou & Papademetriou, 2001).  

In the context of physics education, instruction for conceptual change has often been 

associated with the ‘classical approach’ (Posner et al. 1982) earlier described, based on the use of 

cognitive conflict.  An important limitation of this type of instruction is the assumption that conceptual 

change is something that can happen in a short period of time and involves a rational process of 

concept replacement, similar to a Gestalt-type of restructuring experience. On the contrary, as we have 

discussed in this paper, the process of conceptual change is a gradual and continuous process that 

involves many interrelated pieces of knowledge and requires a long time to be achieved. Limited uses 

of cognitive conflict can be useful as an instructional strategy but only in the context of a larger 

program of carefully planned curricula and interventions.  

 There are a number of directions one could take in the development of instructional 

approaches to promote conceptual change. One direction is to try to narrow the gap between students’ 

framework theories, and the new, to-be-acquired explanatory frameworks necessary for understanding 

science and mathematics concepts, thus making the problem of conceptual change less acute. This can 

be done by taking a long-term perspective in curricula design as well as in everyday teaching practices, 

by anticipating later expansions of meaning, identifying the points at which conceptual change is 

necessary and by looking for bridging devices from early on (Greer, 2006).   

This recommendation comes in contrast to current practices where insufficient attention to the 

issue of conceptual change and the implicit belief that learning progresses ‘along a simple/complex 

dimension’ (Greer, 2006, p.178) results in the design of curricula that introduce ‘simple’ concepts first 

and more ‘complex’ concepts later.  As Vosniadou & Vamvakoussi (2006) note, the concepts that are 

considered to be “simpler” are usually the ones closer to children’s intuitive understandings. Thus, 

children’s initial theories are confirmed and strengthened through instruction, resulting in cognitive 

inflexibility that widens the gap between children’s current knowledge and the to-be-acquired 

information, hindering further understanding.  

 A more radical proposal has been offered by some mathematics education researchers who 

suggest that curricula should support the introduction of certain difficult concepts at an earlier stage. 

For instance, it has been proposed that instead of teaching arithmetic first and algebra second the two 

strands should be intertwined from an early age (see Carraher, Schliemann, & Brizuela, 2001). There 



are also interesting proposals about how to teach rational number in ways that can be understood by 

very young children (Nunes, 2007). We consider these to be interesting proposals that need to be 

further investigated first at the experimental level. 

 Regardless of how far one can go in knowledge acquisition relying on social-constructivist 

types of approaches that build on prior knowledge through natural, implicit, enrichment types of 

mechanisms, the problems of conceptual change require that teachers also teach to students 

mechanisms for knowledge restructuring, such as model-based reasoning, the deliberate uses of 

bridging analogies, and cross domain mappings. Instructional interventions should also pay attention to 

the development of students who have the metaconceptual awareness, epistemological sophistication 

and intentional learning skills that will allow them to the engage in meaningful, long-term learning 

(Sinatra & Pintrich, 2003; Wiser & Smith, this volume; Vosniadou, 2003).  

We agree with Hatano and Inagaki (2003) that considerable social support is required for this 

type of instruction.  One way teachers can provide the socio-cultural environment to encourage 

metaconceptual awareness is to ask students to participate in dialogical interaction, which is usually 

whole-class discussion. Whole classroom dialogue can be effective because it ensures on the one hand 

that students understand the need to revise their beliefs deeply instead of engaging in local repairs 

(Chinn & Brewer, 1993), and on the other that they spend the considerable time and effort needed to 

engage in the conscious and deliberate belief revision required for conceptual change   (see also 

Miyake, 1986; this volume).  

Hatano, together with his colleague Kayoko Inagaki, have conducted a number of educational 

studies in order to show how individual cognitive mechanisms can combine with socio-cultural 

constraints to promote instruction-induced conceptual change (Hatano, 1996; Hatano & Inagaki, 1991; 

Inagaki, Hatano & Moritas, 1998). Most of these studies are conducted using the Japanese science 

education method known as Hypothesis-Experiment-Instruction (HEI) originally devised by Itakura 

(Itakura, 1962). This method was utilized extensively by Hatano and his colleagues and it is a 

promising method for achieving the kind of metaconceptual awareness and intentional learning 

required by students for the deliberate and intentional belief revision needed for instruction based 

conceptual change (see also Miyake, this volume). 

 It is probably clear by now that teaching and learning for conceptual change requires 

substantial amounts of effort on the part of the teacher, as well as on the part of the learner. For this 



effort to be invested, there should be an environment within which this is both necessary and 

appreciated. That is, for teachers to design relevant and meaningful activities (Vosniadou et al., 2001), 

and for students to be actively engaged, there should be a broader educational community that 

recognizes and is capable of assessing this kind of effort.  

 

Conclusions 

 We argued that science and mathematics concepts are difficult to learn because they are 

embedded in initial, framework theories of physics and mathematics, which are different explanatory 

frameworks from those that are now scientifically accepted.  These naïve framework theories are not 

fragmented observations but form a relatively coherent explanatory system which is based and 

continuously re-confirmed by everyday experience. Students are not aware of these differences and 

employ the usual enrichment mechanisms to add scientific and mathematical information to existing 

knowledge structures, destroying their coherence and creating internal inconsistency and 

misconceptions which are ‘synthetic models’.   

 In order to foster conceptual change through instruction, we can consider the design of 

curricula and instruction that reduce the gap between students’ expected initial knowledge and the to-

be-acquired information, so that learners can use their usual constructive, enrichment types of learning 

mechanisms successfully.  It is also important to develop in students the necessary metaconceptual 

awareness, epistemological sophistication, hypothesis testing skills, and the top-down, conscious and 

deliberate mechanisms for intentional learning that will prepare them for meaningful, life-long 

learning. Instruction for conceptual change thus requires not only the restructuring of students’ naïve 

theories but also the restructuring of their modes of learning and reasoning.  The above cannot be 

accomplished without substantial sociocultural support.  
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Table 1. Concept of the Earth 
 

Initial Scientific 

Earth as a physical object Earth as an astronomical object (planet) 

Flat Spherical 

Rotating around its axis 
Stationary 

Revolving around Sun 

Supported Unsupported 

Up/down Gravity Gravity towards the center of earth 

Geocentric system Heliocentric system 

 



 

Table 2. Frequencies/Percentages of Children’s Response Types to the Categorization Test 
 

Questions  Response Types 1st grade 5th grade 

1. Distinguishes solar from physical objects and groups Earth 

with solar. (Two categories.)  

21% 47% 

2. Distinguishes solar from physical objects and groups Earth 

with solar. (Many categories.)  

13% 32% 

3. Distinguishes solar from physical objects and groups Earth 

with physical. (Many categories.)  

20% 5% 

4. Does not distinguish physical from solar objects.  44% 16% 

1. I want you to 

put together the 

things that you 

think should go 

together, i.e. 

belong to the same 

group. 

 5. Don’t know.  2%  

1. Distinguishes solar from physical objects and groups Earth 

with solar.  

27% 79% 

2. Distinguishes solar from physical objects and groups Earth 

with physical.  

11% 5% 

3. Does not distinguish physical from solar objects.  36% 16% 

2. Could you 

make only two 

groups from these 

things? 

4. Don’t know / Cannot do it  16%  

1. Distinguishes solar from physical objects and groups Earth 

with solar.  

42% 90% 

2. Distinguishes solar from physical objects and groups Earth 

with physical.  

35% 10% 

3. Could you put 

in one group the 

things that go with 

the EARTH and in 

another the things 

that do not? 
3. Does not distinguish physical from solar objects.  23% ----- 

 

 



 

Table 3. Concept of the Number 
 

Children’s number concept ( before they are 

exposed to rational number instruction) 

The mathematical concept of  rational number  

 Numbers are counting numbers   Not based on counting 

 Numbers are discrete: There is no other 

number between a number and its next  

 There is a smallest number (0 or 1)  

 Dense: Between any two, non equal numbers 

there are infinitely many numbers 

 There is no smallest numbers 

 Numbers can be ordered by means of their 

position in the count list 

 “Longer” numbers (i.e. with more digits) are 

bigger   

 Ordering is not counting-based 

 

 “Longer” numbers are not necessarily bigger, 

e.g. 3.2> 3.197 

 

 

Addition and multiplication “make bigger” 

 Subtraction and division “make smaller” 

The magnitude of the outcome depends on the 

numbers involved, e.g. 

 Adding a negative number “makes smaller” 

 Multiplying by a number smaller than one 

“makes smaller” 

 Every number has only one symbolic 

representation 

 Any number can be represented either as a 

fraction, or as a decimal. In addition, any 

number can be represented in various ways as a 

fraction or decimal. 

 

 



Table 4. Synthetic Models of rational numbers intervals 
 

Category 

type 
Models 

7th grade 

(N=181) 

9th grade 

(N=166) 

11th grade 

(N=202) 
Total 

All Finite Initial - Model 19 (25.0%) 21 (42.9%) 15 (25.0%) 55 (29.7%) 

All or mostly Finite for decimals and 

fractions 
20 (26.3%) 10 (20.4%) 11 (18.3%) 41 (22.2%) 

Infinite for integers, mostly Finite for 

decimals and fractions 
16 (21.1%) 5 (10.2%) 15 (25.0%) 36 (19.5%) 

Mixed1 21 (27.6%) 13 (26.5%) 19 (31.7%) 53 (28.6%) 

FIN 

(N=185) 

Total by Level1 76 49 60 185 

Infinite for Integers, mostly Finite for 

decimals & fractions 
2 (2.9%) 2 (4.8%) 5 (10.0%) 9 (5.6%) 

Mostly infinite for decimals, mostly finite 

for fractions 
23 (33.8%) 6 (14.3%) 10 (20%) 39 (24.4%) 

Mostly finite for decimals, mostly infinite 

for fractions 
8 (11.8%) 3 (7.1%) 10 (20%) 21 (13.1%) 

Mixed2 35 (51.5%) 31 (73.8%) 25 (50.0%) 91 (56.9%) 

FIN / INF 

(N=160) 

Total by Level2 68 42 50 160 

Mostly infinite for decimals, mostly finite 

for fractions 
1 (2.7%) 3 (4%) 4 (4.3%) 8 (3.9%) 

Mostly finite for decimals, mostly infinite 

for fractions 
0 (0%) 0 (0%) 2 (2.2%) 2 (1%) 

All Infinite -Advanced Model  3 (8.1%) 5 (6.7%) 12 (13.0%) 20 (9.8%) 

All Infinite- Sophisticated Model 5 (13.5%) 33 (44.0%) 38 (41.3%) 76 (37.3%) 

Mixed3 28 (75.7%) 34 (45.3%) 36 (39.1%) 98 (48%) 

INF 

(N=204) 

Total by Level3 37 75 92 204 

 

 

 

 

 



 Table 5. Synthetic Models in photosynthesis (Kyrkos & Vosniadou, 1997) 
 

1. Initial Explanation 

Plants take food from the ground, through their 

roots. Food accumulates inside the plant and 

makes it grow. They do not breathe. 

2. Photosynthesis as breathing, separate from 

feeding 

Photosynthesis is about breathing and it does not 

affect the initial explanation of feeding. Plants 

take in dirty air, clean it, and they give out clean 

air.    

3. Photosynthesis as a feeding process 

Plants take food from the ground and from water 

through their roots. They also take food from the 

air and light through their leaves (O, CO2).  

4. Photosynthesis as a revised process of feeding 

Plants take food from the ground and from 

atmosphere and also use water and O or CO2 to 

make the food in their leaves through the process 

of photosynthesis (mixture/not a chemical 

process). 

 



Table 6. Explanations of Plant Development 
 

Plant Development (Photosynthesis) 

Initial Explanation 

  

Plants take their food from the ground (water or 

other nutrients) through their roots 

 

  

Plants grow as food accumulates in small pieces 

inside them 

 

 

 

 

  

Plants do not breathe.  

 

Scientific Explanation 

  

Plants create their own food through the process 

of photosynthesis 

 

  

Photosynthesis is a chemical process during which 

solar energy is used to transform water + CO2 into 

organic materials like glucose. Oxygen is also 

formed and stored in the plant or released in the 

atmosphere 

 

  

Plants take in CO2 from the atmosphere and use it 

in the process of photosynthesis. To this extent 

“breathing” in plants is related to growth and 

development.  
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Figure 1. Mental Models of the Earth 



 
Figure 2: Hypothetical Conceptual Structure Underlying Children’s Mental Models of the Earth 
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Figure 3. Percent of participants placed in Categories FIN, FIN/INF, INF as a function of grade 
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Figure 4. Frequency of Models of the Layers & Composistion of the Earth by Grade 



 


